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Electrostatic Forces between

Surfaces in Liquids

14.1 The Charging of Surfaces in Liquids: the Electric
“Double-Layer”

Situations in which van der Waals forces alone determine the total interaction are

restricted to a few simple systems—for example, to interactions in vacuum or to

nonpolar wetting films on surfaces, both of which were discussed in Chapter 13. In

more complex, and more interesting, systems long-range electrostatic forces are also

involved, and the interplay between these two interactions has many important

consequences.

As mentioned earlier the van der Waals force between similar particles in a medium

is always attractive, so that if only van der Waals forces were operating, we might expect

all dissolved particles to stick together (coagulate) immediately and precipitate out of

solution as a mass of solid material. Our own bodies would be subject to the same fate if

we remember that we are composed of 55–75% water. Fortunately this does not happen,

because particles suspended in water or any liquid of high dielectric constant are

usually charged and can be prevented from coalescing by repulsive electrostatic forces.

Other repulsive forces that can prevent coalescence are solvation and steric forces,

described in Chapters 15 and 16. In this chapter we shall concentrate on the electro-

static forces.

The charging of a surface in a liquid can come about in three ways:

1. By the ionization or dissociation of surface groups (e.g., the dissociation of protons

from surface carboxylic groups (�COOH / �COO� þ Hþ), which leaves behind

a negatively charged surface)

2. By the adsorption or binding of ions from solution onto a previously uncharged

surface—for example, the adsorption of �OH� groups to the water-air or water-

hydrocarbon interfaces that charges them negatively, or the binding of Ca2þ onto the

zwitterionic headgroups of lipid bilayer surfaces that charges them positively. The

adsorption of ions from solution can, of course, also occur onto oppositely charged

surface sites—for example, the adsorption of cationic Ca2þ to anionic �COO� sites

vacated by Hþ or Naþ. Such surfaces are known as ion exchangeable surfaces. Ion

exchange can take a surprisingly long time.

3. The above examples apply to isolated surfaces exposed to a liquid medium (usually

water). A different type of charge exchangemechanism occurs between two dissimilar
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surfaces very close together where, as previously mentioned in Section 3.5, charges—

usually protons or electrons—hop across from one surface to the other. This gives rise

to an electrostatic attraction between the now oppositely charged surfaces. Such

“acid-base” type interactions are important for understanding short-range adhesion

forces and are discussed in Chapter 17.

Whatever the charging mechanism (also referred to as charge regulation), the final

surface charge of co-ions is balanced by an equal but oppositely charged region of coun-

terions. Some of the counterions are bound, usually transiently, to the surface within the so-

called Stern or Helmholtz layer, while others form an atmosphere of ions in rapid thermal

motion close to the surface, known as the diffuse electric double-layer1 (Figure 14.1). The

difference between a “bound” ion and a “free” ion in the diffuse double-layer is analogous

to the difference between a water molecule in the sea and in the atmosphere. However,

because the distances involved in the latter case are of atomic dimensions, the distinction

can sometimes become blurred.

Two similarly charged surfaces usually repel each other electrostatically in solution,

though under certain conditions they may attract at small separations. Zwitterionic

surfaces—that is, those characterized by surface dipoles but no net charge also interact

electrostatically with each other, though here we shall find that the force is usually

attractive.

Negatively
charged
surface

Bound counterion

Physisorbed counterion

Stern layer

Diffuse
counterion
atmosphere

WATER

Co ion

FIGURE 14.1 Ions bound to a surface are not rigidly bound but can exchange with other ions in solution; their lifetime
on a surface can be as short as 10�9 s (1 ns) or as long as many hours.

1Originally, the layers of co-ions and counterions were thought to behave like a capacitor whose two rig-

id plates carry equal but opposite charges (see Section 3.3). Hence the term “double-layer” [of charge]. Indeed,

capacitors are excellent models for double-layers as far as their electrical properties are concerned.
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14.2 Charged Surfaces in Water: No Added
Electrolyte—“Counterions Only”

In the following sections we shall consider the counterion distribution and force

between two similarly charged planar surfaces in a pure liquid such as water, where

(apart from the H3O
þ and OH� ions from dissociated water) the only ions in the

solution are those that have come off the surfaces. Such systems are sometimes

referred to as “counterions only” systems, and they occur when, for example, colloidal

particles, clay sheets, surfactant micelles or bilayers whose surfaces contain ionizable

groups interact in pure water, and also when thick films of water build up (condense)

on an ionizable surface such as glass. But first we must consider some fundamental

equations that describe the counterion distribution between two charged surfaces in

solution.

14.3 The Poisson-Boltzmann (PB) Equation
For the case when only counterions are present in solution, the chemical potential of any

ion may be written as (cf. Sections 2.3 and 2.4):

m ¼ zejþ kT log r; (14.1)

where j is the electrostatic potential (E ¼ �dj/dx is the electric field), and r the number

density of ions of valency z at any point x between two surfaces (Figure 14.2). Since only

differences in potential are ever physically meaningful, we may set j0¼ 0 at the midplane

(x ¼ 0), where also r ¼ r0 and (dj/dx)0 ¼ 0 by symmetry.

From the equilibrium requirement that the chemical potential be the same

throughout (i.e., for all values of x), Eq. (14.1) gives us the expected Boltzmann distri-

bution of counterions at any point x (the Nernst equation):

r ¼ r0e
�zej=kT : (14.2)

One further important fundamental equation is required. This is the well-known Poisson

equation for the net excess charge density at x:

zer ¼ �303ðd2j=dx2Þ (14.3)

which when combined with the Boltzmann distribution, Eq. (14.2), gives the Poisson-

Boltzmann (PB) equation:

d2j=dx2 ¼ �zer=303 ¼ �ðzer0=303Þe�zej=kT : (14.4)

When solved, the PB equation gives the potential j, electric field E ¼ �vj/vx, and

counterion density r, at any point x in the gap between the two surfaces. Let us first

determine these values at the surfaces themselves. These quantities are often referred to

as the contact values: js, Es, rs, and so on.
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14.4 Surface Charge, Electric Field, and Counterion
Concentration at a Surface: “Contact” Values

The PB equation is a nonlinear second-order differential equation, and to solve for j we

need two boundary conditions, which determine the two integration constants. The first

boundary condition follows from the symmetry requirement that the field must vanish at

the midplane—that is, that E0 ¼ �(dj/dx)0 ¼ 0. The second boundary condition follows

from the requirement of overall electroneutrality—that is, that the total charge of the

counterions in the gap must be equal (and opposite) to the charge on the surfaces. If s is

the surface charge density on each surface (in C m�2) and D is the distance between the

surfaces (see Figure 14.2), then the condition of electroneutrality implies that

s ¼ �
Z D=2

0
zerdx ¼ þ303

Z D=2

0
ðd2j=dx2Þ2dx ¼ �303ðdj=dxÞD=2 ¼ �303ðdj=dxÞS ¼ �303ES;

that is,

ES ¼ �s=303; (14.5)
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FIGURE 14.2 Two negatively charged surfaces of surface charge density s separated a distance D in water. The only
ions in the space between them are the counterions that have dissociated from the surfaces. The counterion
density profile rx and electrostatic potential jx are shown schematically in the lower part of the figure. The “contact”
values are rs, js and ES ¼ �(dj/dx)S.
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which is essentially Gauss’ Law (cf. Section 3.4). Equation (14.5) gives an important

general boundary condition relating the surface charge density s to the electric field

Es at each surface (at x ¼ �D/2), which we may note is independent of the gap

width D.

n n n

Worked Example 14.1
Question: Is the electric field near a charged surface in water sufficiently intense to immobilize

the water molecules adjacent to it?

Answer:Assuming ahigh-chargedensity ofs¼�0.3Cm�2 (which is one chargeper 0.5nm2—

typical of a fully ionized surface), the electric field at the surface, Eq. (14.5), is Es ¼ �s/303 ¼
� 0.3/80(8.85 � 10�12) ¼ �4.2 � 108 V m�1. We may compare this to the field just outside

a monovalent ion in water. Using Eq. (3.1), the field at r ¼ 0.25 nm from the center of an ion is

Er ¼ e/4p303r
2 ¼ 2.9 � 108 V m�1. Since this is comparable to the field at the charged surface,

and since the fields of monovalent ions are usually not strong enough to immobilize water

molecules around them (cf. Chapters 3–5), it is unlikely that water molecules will become

significantly oriented, immobilized or “bound” to any but the most highly charged surfaces.

However, other interactions with the surface, such as H-bonding, may lead to significant

effects on the local water structure.

n n n

Turning now to the ionic concentrations, there exists an important general relation

between the concentrations of counterions at either surface and at the midplane.

Differentiating Eq. (14.2) and then using Eq. (14.4) we obtain

dr

dx
¼ � zer0

kT
e�zej=kT

�

dj

dx

�

¼ 303

kT

�

dj

dx

��

d2j

dx2

�

¼ 303

2kT

d

dx

�

dj

dx

�2

; (14.6)

hence

rx � r0 ¼
Z x

0
dr ¼ 303

2kT

Z x

0
d

�

dj

dx

�2

¼ þ 303

2kT

�

dj

dx

�2

x

so that

rx ¼ r0 þ
303

2kT

�

dj

dx

�2

x
; (14.7)

which gives r at any point x in terms of r0 at the midplane and (dj/dx)2 at x. In particular

at the surface, x ¼ D/2, we obtain using Eq. (14.5) the contact value of r

rs ¼ r0 þ s2=2303kT : (14.8)

This important result shows that the concentration of counterions at the surface depends

only on the surface charge density s and the counterion concentration at the midplane. It

shows that rs never falls below s2/2303kT even for isolated surfaces—that is, for two
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surfaces far apart when r0 / 0. For example, for an isolated surface in water of charge

density s ¼ �0.2 C m�2 (one charge per 0.8 nm2) at 293 K

rs ¼ s2=2303kT ¼ ð0:2Þ2=ð2� 80� 8:85� 10�12 � 4:04� 10�21Þ ¼ 7:0� 1027 m�3;

which is about 12 M. If these surface counterions are considered to occupy a layer of

thickness ~0.2 nm, the above value for rs corresponds to a surface counterion density of

(7 � 1027)(0.2 � 10�9) ¼ 1.4 � 1018 ions/m2 or one charge per 0.7 nm2, which is about the

same as the surface charge density s. This is an interesting result, for it shows that

regardless of the counteriondistribution profile rx away froma surface (Section 14.5),most

of the counterions that effectively balance the surface charge are located in the first few

ångstroms from the surface (Jönsson et al., 1980)—that is, right up against the surface,

hence the term double-layer. However, for lower surface charge densities, since rsf s2, the
layer of counterions extends well beyond the surface and becomes much more diffuse,

hence the term diffuse double-layer.

14.5 Counterion Concentration Profile Away from
a Surface

The above equations are quite general and are the starting point of all theoretical

computations of the ionic distributions near planar charged surfaces, even when the

solution contains added electrolyte (Section 14.10 onwards). To proceed further for the

specific case of counterions only (see Figure 14.2) we must now solve the Poisson-

Boltzmann equation, Eq. (14.4), which can be satisfied by2

j ¼ ðkT=zeÞ logðcos2 KxÞ (14.9)

or

e�zej=kT ¼ 1=cos2 Kx; (14.10)

where K is a constant given by

K 2 ¼ ðzeÞ2r0=2303kT : (14.11)

With this form for the potential we see that j ¼ 0 and dj/dx ¼ 0 at x ¼ 0 for all K, as

required. To solve for Kwe differentiate Eq. (14.9) and then use Eq. (14.5) to obtain for the

electric fields

at any point x : Ex ¼ �dj=dx ¼ þð2kTK=zeÞtanKx; (14.12a)

at the surfaces : Es ¼ �ðdj=dxÞs ¼ þð2kTK=zeÞtanðKD=2Þ ¼ �s=303: (14.12b)

2There are other mathematical solutions to this equation, but Eq. (14.9) is the only one that is physically

realistic—that is, satisfying all the boundary conditions, as demonstrated further in the following.
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The counterion distribution profile

rx ¼ r0e
�zej=kT ¼ r0=cos

2 Kx (14.13)

is therefore known once K is determined from Eq. (14.12) in terms of s and D.

n n n

Worked Example 14.2
Question: Two charged surfaces with s ¼ 0.2 C m�2 are 2 nm apart (D ¼ 2 nm). Calculate the

field, potential and counterion density at each surface, at 0.2 nm from each surface and at the

midplane, assuming monovalent counterions.

Answer: From Eq. (14.12) we find that for z ¼ �1, K ¼ 1.3361 � 109 m�1 at 293 K. From

Eq. (14.11) thismeans that r0¼ 0.40� 1027m�3, so that at the surface rs¼ r0/cos
2(KD/2)¼ 7.4�

1027 m�3. The same result is also immediately obtainable from Eq. (14.8), since, as we have

previously established, s2/2303kT¼ 7.0� 1027 m�3. Thus, the counterion concentration at each

surface rs is about 18.5 times greater than at the midplane r0, which is only 1 nm away. Putting

K¼ 1.3661� 109 m�1, kT¼ 4.045� 10�21 J, s¼ 0.2 Cm�2, 3¼ 80, ze¼ 1.602� 10�19 C, andD¼
2 � 10�9 m into Eqs. (14.9), (14.12), and (14.13), we obtain:

j (mV) E (V mL1) r (mL3)

At x ¼ 1 nm (“contact value” at surface) 74 2.8 � 108 7.4 � 1027 (12 M)
At x ¼ 0.8 nm (0.2 nm from surface) 37 1.2 � 108 1.7 � 1027 (3 M)
At x¼ 0 (“midplane” value 1 nm from surface) 0 0 0.4 � 1027 (0.7 M)

Note the unphysically steep decrease in the ion density r near the surface over a distance of

only 0.2 nm (2 Å).

n n n

Figure 14.3 shows how the counterion concentration varies with distance for the case

of s ¼ 0.224 C m�2, D ¼ 2.1 nm, as calculated on the basis of (1) the Poisson-Boltzmann

0 0
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FIGURE 14.3 Monovalent counterion concentration profile between two charged surfaces (s ¼ 0.224 C m�2,
corresponding to one electronic charge per 0.714 nm2) a distance 2.1 nm apart in water. The smooth curve is obtained
from the Poisson-Boltzmann equation; the other is from a Monte Carlo simulation by Jönsson et al., (1980).
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equation as in the above example, and (2) a Monte Carlo simulation of the same system.

The agreement is quite good though the Monte Carlo result gives a slightly higher

counterion concentration very near the surfaces compensated by a lower concentration

in the central region between the two surfaces.

14.6 Origin of the Ionic Distribution, Electric Field,
Surface Potential, and Pressure

Before we proceed to calculate the force or pressure between two surfaces, it is instructive

to discuss, in qualitative terms, how the counterion distribution, potential, field, and

pressure between two surfaces arise. The first thing to notice is that if there were no

ions between two similarly charged surfaces, there would be no electric field in the gap

between them. This is because the field emanating from a planar charged surface,

E ¼ �s/2303, is uniform away from the surface (Section 3.3). The two opposing fields

emanating from the twoplaneparallel surfaces therefore cancel out to zerobetween the two

surfaces orplates (although they addupoutside the twoplates). Thus,when the counterions

are introduced into the intervening region they do not experience an attractive electrostatic

force toward each surface. The reason why the counterions build up at each surface is

simply because of their mutual repulsion and is similar to the accumulation of mobile

charges on the surface of any charged conducting material such as a metal. The repulsive

electrostatic interaction between the counterions and their entropy of mixing alone

determine their concentrationprofile rx, the potential profilejx and the fieldExbetween the

surfaces (Jönsson et al., 1980), andwemay further note that in all the theoretical derivations

so far the only way the surface charge density s enters into the picture is through Eq. (14.5),

which is simply a statement about the total number of counterions in the gap.

Further, if the centers of the surface coions were not at the physical solid-liquid

interface (at x ¼ �1
2D) but at some small distance d within the surface (Figure 14.4), the

ionic distribution rx, potential jx, field Ex, and the pressure in the medium between þ1
2D

and �1
2D would not change. But the potential would be different if it were measured at

x ¼ �(12D � d). This is the origin of the so-called Stern and Helmholtz layers (Stern, 1924;

Verwey and Overbeek, 1948; Hiemenz, 1997) that separate the charged plane from the

Outer Helmholtz Plane (OHP) from which the ionic atmosphere begins to obey the

Poisson-Boltzmann equation. The combined thickness of the Stern and Helmholtz

layers d is of the order of a few ångstroms and reflects the finite size of the charged

surface groups (coions) and transiently bound counterions, as illustrated in Figures 14.1

and 14.4. Clearly, within this region, whose thickness is determined by the finite (hard

core) sizes of the ions, the PB equation cannot hold. If the dielectric constant of the

Stern-Helmholtz layer is assumed to be uniform and equal to 3d it can be modeled as

a capacitor (see Section 3.3) whence the additional drop in potential across this layer is

given by

jd ¼ sd=303d: (14.14)
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For example, if d ¼ 0.2 nm, s ¼ 0.2 C m�2, and 3d ¼ 40, we obtain jd ¼ 130 mV, which is

actually higher than the potential drop across the diffuse double-layer, calculated in the

previous worked example.

We now turn to the origin of the force or pressure between the two surfaces. Contrary

to intuition, the origin of the repulsive force between two similarly charged surfaces in

a solvent containing counterions and/or added electrolyte ions is entropic (osmotic), not

electrostatic. Indeed, the electrostatic contribution to the net force is actually attractive.

Consider an isolated surface, initially uncharged, placed in water. When the surface

groups dissociate the counterions leave the surface against the attractive Coulombic force

pulling them back. What maintains the diffuse double-layer is the repulsive osmotic

pressure between the counterions which forces them away from the surface and from

each other so as to increase their configurational entropy. On bringing two such surfaces

together one is therefore forcing the counterions back onto the surfaces against their

preferred equilibrium state—that is, against their osmotic repulsion but favored by the

electrostatic interaction. The former dominates and the net force is repulsive.

On the other hand, to understand why the purely electrostatic part of the interaction is

attractive recall that it involves an equal number of positive (counterion) and negative

(surface) charges—that is, the system is overall electrically neutral. The net Coulombic

interaction between a system of charges that are overall neutral always favors their

association, as we saw in the case of ionic crystals in Chapter 3 and dipoles in Chapter 4.

There are situations where the electrostatic attraction does dominate over the entropic

repulsion, giving rise to an overall attraction even between two equally charged surfaces

or particles in solution. These cases are discussed in later Sections.

No Stern layer

Stern layer

Surface ions

OHP

-D/2-D/2 D/2 D/2x = 0x = 0

OHP

x

x

x
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TOT
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FIGURE 14.4 Stern layers of thickness d at each surface dividing the planes of fixed charge density s from the
boundary of the aqueous solution—the OHP. There is an additional linear drop in potential across the Stern layer
given by Eq. (14.14) so that the total potential drop is jTOT¼ jdþ js. However, the counterion density and electrostatic
potential within the aqueous region between the two OHPs at x ¼ D/2 and x ¼ �D/2, and the pressure between the
two surfaces, are independent of d.
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14.7 The Pressure between Two Charged Surfaces
in Water: the Contact Value Theorem

We may derive an expression for the pressure of counterions in a confined space in the

samewayas thepressureof a vanderWaals gas in aconfinedvolumewasderived inSection

2.5. Using Eq. (2.20), the repulsive pressure P of the counterions at any position x from the

center (see Figure 14.4) is given by (vP/vx0)x,T¼ r(vm/vx0)x,T, where the chemical potential m
is given by Eq. (14.1). The change in pressure at x on bringing two plates together from

infinity (x0 ¼ N, where P ¼ 0) to a separation x0 ¼ D at constant temperature is therefore

PxðDÞ � PxðNÞ ¼ PxðDÞ ¼ þ
Z D

N
½zerðdj=dx0Þdx0 þ kTðdr=dx0Þdx0�

¼ �
Z x0¼N

x0¼D
½zerðdj=dx0Þxdx0 þ kTdrx�: (14.15)

Note that in Eq. (14.15), the values are computed at a fixed point x within the ionic

solution, which is not the same as the variable separation x0 between the two surfaces.

Replacing zer by the Poisson equation, Eq. (14.3), and using the relation

d

dx

�

dj

dx

�2

¼ 2

�

dj

dx

��

d2j

dx2

�

Eq. (14.15) becomes

PxðDÞ � PxðNÞ ¼
�

� 1

2
303

�

dj

dx

�2

xðDÞ
þ kTrxðDÞ

�

�
�

� 1

2
303

�

dj

dx

�2

xðNÞ
þ kTrxðNÞ

�

; (14.16)

where the subscripts x mean that the values are calculated at x when the surfaces are at

a distance D orN apart. In the present case, since there are no electrolyte ions in the bulk

solution, r0(N) ¼ 0, so that by Eq. 14.7, we have Px(N) ¼ 0, as expected.

The above important equation gives the pressure P at any point x between the two

surfaces, and we may notice that it is split into two contributions. The first, being

a square, is always negative—that is, attractive (except at the midplane, x ¼ 0, where it is

zero). This is the electrostatic field energy contribution, discussed qualitatively in the

previous section. The second term is positive and hence repulsive. This is the entropic

(osmotic) contribution to the force.

At equilibrium, Px(D) should be uniform throughout the gap—that is, independent of

x—and it is also the pressure acting on the two surfaces. To verify this we note that using

Eq. (14.7) the above may be written as

PxðDÞ ¼ kT ½r0ðDÞ � r0ðNÞ� (14.17a)

or
PxðDÞ ¼ kTr0ðDÞ since here r0ðNÞ ¼ 0: (14.17b)

which is indeed independent of x and depends only on the increased ionic concentration,

or osmotic pressure, at the midplane, r0(D), and thus on s and D. We may therefore drop

the subscript x from Px(D). It is instructive to insert Eq. (14.8) into the above equation,

from which we obtain
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PðDÞ ¼ kTr0ðDÞ ¼ kT ½rsðDÞ � s2=2303kT �;
that is,

PðDÞ ¼ kT ½rsðDÞ � rsðNÞ�: (14.18)

Thus, the pressure is also given by the increase in the counterion concentration at the

surfaces as they approach each other. This important equation, known as the contact

value theorem, is always valid as long as there is no interaction between the counterions

and the surfaces—that is, as long as there is no counterion adsorption so that the surface

coion charge density remains constant and independent of D. It shows that the force or

pressure is repulsive if the density of counterions at the surface increases as the two

surfaces are brought together and attractive if it decreases.

The contact value theorem is very general and applies to many other types of inter-

actions—for example, to double-layer interactions when electrolyte ions are present in

the solution, to solvation interactions where rs(D) is now the surface concentration of

solvent molecules (Chapter 15), to polymer-associated steric and depletion interactions

where rs(D) is the surface concentration of polymeric groups (Chapter 16), and to various

entropic or thermal fluctuation forces between fluid surfaces and biological membranes

(Chapters 16 and 21). In the case of overlapping double-layers, the resulting force is often

referred to as the electric or electrostatic double-layer force, even though, as we have seen,

the repulsion is really due to entropic confinement.

Returning to Eq. (14.17b), the pressuremay also be expressed in terms of K, as given by

Eq. (14.11), by

P ¼ kTr0 ¼ 2303ðkT=zeÞ2K 2: (14.19)

As an example let us apply this result to Worked Example 14.2, where for two surfaces

with s ¼ 0.2 C m�2 at D ¼ 2 nm apart, we found K ¼ 1.336 � 109 m�1. The repulsive

pressure between them is therefore 1.7 � 106 N m�2, or about 17 atm. Note that this

repulsion exceeds by far any possible van der Waals attraction at this separation. For

a typical Hamaker constant of Az 10�20 J the van der Waals attractive pressure would be

only A/12pD3 z 3 � 104 N m�2 or about 0.3 atm.

The above equations have been used successfully to account for the equilibrium

spacings of ionic surfactant and lipid bilayers in water (Cowley et al., 1978). Figure 14.5

shows experimental results obtained for the repulsive pressure between bilayers

composed of a mixture of charged and uncharged lipids in water using the Osmotic

Pressure Technique (cf. Figures 12.1h and 12.2), together with the theoretical curve based

on Eq. (14.19). The agreement is very good down toDz 2 nm and shows that the effective

charge density of the anionic lipid headgroups is about 1e per 14 nm2. At smaller

distances the measured forces are more repulsive than expected due to the steric-

hydration interactions between the thermally mobile hydrophilic headgroups that

characterize these fluid-like interfaces (cf. Problem 14.3 and Chapters 15, 16, and 21).

Similar methods have been used to measure the repulsive electrostatic forces between
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surfactant bilayers and biological membranes, both in pure water and in salt solutions

(Diederichs et al., 1985; Dubois et al., 1992).

Repulsive electrostatic forces also control the long-range swelling of clays in water.

Most naturally occurring clays are composed of lamellar aluminosilicate sheets about 1 to

2 nm thick whose surfaces dissociate in water giving off Naþ, Kþ, and Ca2þ ions, and when

placed in water they can swell tomore than 10 times their original volume (Norrish, 1954).

The swelling of clays is, however, a complex matter and also involves other forces at

surface separations below about 3 nm (van Olphen, 1977; Pashley and Quirk, 1984;

Kjellander et al., 1988a, b; Quirk, 1994).

In the case of charged spherical particles (e.g., latex particles3) in water, the long-range

electrostatic repulsion between them can result in an ordered lattice of particles even

when the distance between them is well in excess of their diameter (Takano and Hachisu,

1978). In such systems (cf. Figure 6.2) colloidal particles attempt to get as far apart from

each other as possible but, being constrained within a finite volume of solution, are
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FIGURE 14.5 Measured repulsive pressure between charged bilayer surfaces in water. The bilayers were composed of
90% lecithin (phosphatidylcholine, PC), a neutral zwitterionic lipid, and 10% phosphatidylglycerol (PG), a negatively
charged lipid. For full ionization, the surface charge density should be one electronic charge per 7 nm2, whereas the
theoretical line through the experimental points suggests one charge per 14 nm2 (i.e., about 50% ionization). Below
2 nm there is an additional repulsion due to “steric-hydration” forces. [Adapted from Cowley et al., (1978), �1978
American Chemical Society.]

3Latex particles are made from biological or synthetic polymers. Hydrophobic latex particles can be

rendered water-soluble by grafting hydrophilic groups to their surfaces—for example, sulfonic acid groups to

polystyrene particles.
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forced to arrange themselves into an ordered lattice. For a review on colloidal crystals see

Murray and Grier (1996).

Parsegian (1966) and Jönsson and Wennerström (1981) extended the above analysis

to the interactions between cylindrical and spherical structures, and the results were

used to analyze the relative stability of charged surfactant aggregates which form

spontaneously in water. Such micellar structures are soft and fluid-like, and they change

from being spherical to cylindrical to sheet-like (bilayers) as the amount of water is

reduced (see Chapter 20).

n n n

Worked Example 14.3
Question: Two flat but dissimilar surfaces are pressed together with a pressure of 10 atm in

pure water (monovalent counterions only, no added electrolyte) at 25�C. If the surfaces carry

surface charges of densities s1 ¼ �0.04 C m�2 and s2 ¼ �0.08 C m�2, respectively, due to the

surface dissociation of monovalent surface ions, what will be their equilibrium separation?

Answer: Referring to Figure 14.4 and the equations describing K, the ionic distribution,

potential, and pressure for the symmetrical case, it is clear that the two halves of the system on

either side of the midplane at x¼ 0 are completely independent of each other as long as r0 and

T are fixed (which determine K, rx, jx and P). For the asymmetric case, these same equations

apply on either side of the plane at which E¼�dj/dx¼ 0, which redefines x¼ 0. All that needs

to be done is to find the distance D1 and D2 on either side of x ¼ 0, where the surface

change densities are equal to s1 and s2, respectively, as given by Eq. (14.12). Thus, from

Eq. (14.19) a pressure of P ¼ 10 atm ¼ 1.013 � 106Nm�2 at 25�C corresponds to

K ¼ ðze=kTÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P=2303
p ¼ (1.602 � 10�19/1.381 � 10�23 � 298.15) � [(1.013 � 106)/(2 � 8.854 �

10�12 � 78.5)]1/2 ¼ 1.05031 � 109 m�1. Inserting this value into Eq. (14.12) to get 1
2D for

s1 ¼ �0.04 and s2 ¼ �0.08 C m�2 gives 1
2D1 ¼ 0.78 nm and 1

2D2 ¼ 1.08 nm, respectively. The

separation is therefore D ¼ 1
2D1 þ 1

2D2 ¼ 1.86 nm.

n n n

14.8 Limit of Large Separations: Thick Wetting Films
At large distances D/N, in order to keep tan(KD/2) finite in Eq. (14.12b), K must

approach p/D. In this limit the pressure, Eq. (14.19), therefore becomes

PðDÞ ¼ 2303ðpkT=zeÞ2=D2; (14.20)

that is,
PðDÞfþ 1=D2;

which is known as the Langmuir equation. The Langmuir equation has been used to

account for the equilibrium thickness of thick wetting films of water on glass surfaces

(Figures 12.1f and 14.6). Here the water-air surface replaces the midplane of Figure 14.2

so that for a film of thickness d ¼ D/2, we have

PðdÞ ¼ 303ðpkT=zeÞ2=2d2; (14.21)
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which is sometimes referred to as the disjoining pressure of a film. This repulsive pressure

is entirely analogous to the repulsive van der Waals force across adsorbed liquid films,

such as helium (Section 13.9), that causes them to climb up or spread on surfaces. Note,

however, that both the magnitude and range of the double-layer repulsion is usually

greater than the van der Waals’ (P f 1/d2 instead of P f 1/d3).

In Section 13.9 we saw that the equilibrium thickness d of a wetting film is given by one

or other of the following equivalent equations

PðdÞ ¼ þmgH=v ¼ �ðkT=vÞlogðp=psatÞ; (14.22)

where H is the height of the film above the surface of the bulk liquid, v and m the

molecular volume and mass of the solvent (r ¼ m/v), and p/psat the relative vapor

pressure. Thus, if water condenses on a charged surface from undersaturated vapor, the

film thickness d will increase to infinity as H approaches zero or, equivalently, as p

approaches psat (100% relative humidity).

Langmuir (1938) first applied Eq. (14.21) to explain the then paradoxical “Jones-Ray

Effect,” where the rise of water up a capillary tube is observed to be higher than expected

from the Laplace Equation (Chapter 17). Langmuir’s explanation was that since the water

also wets the inner surface of the capillary, the effective radius of the tube is smaller than

the dry radius, and this leads to the higher capillary rise.

Derjaguin and Kusakov (1939) measured how the thickness of a water film on a quartz

glass surface decreased when an air bubble was progressively pressed down on the film.

The results were in rough agreement with the Langmuir equation. Read and Kitchener

(1969) repeated these measurements and again found only rough agreement between

theory and experiment: in the range 30–130 nm themeasured film thicknesses were 10–20

nm thicker than expected theoretically. Later, Derjaguin and Churaev (1974), Pashley and

Kitchener (1979), and Gee et al., (1990b) used the vapor pressure control method to

measure the equilibrium film thickness and found that for d < 30 nm the films are much

thicker than expected from Eq. (14.22). These effects are believed to be due to one or both

Vapor

Water surface

Solid surface

d

FIGURE 14.6 A water film on a charged (ionizable) glass surface will tend to thicken because of the repulsive
“disjoining pressure” of the counterions in the film. If the vapor over the film is saturated, the film will grow
indefinitely, but if it is unsaturated, the equilibrium thickness d will be finite as given by Eqs. (14.21) and (14.22).
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of the following: (1) The air-water and hydrocarbon-water interfaces are known to be

negatively charged due to the preferential accumulation of OH� ions or depletion of

H3O
þ ions at these interfaces (Taylor and Wood, 1957; Usui et al., 1981; Marinova et al.,

1996; Beattie, 2007), so that for a given disjoining pressure P or vapor pressure p the film

thickness would indeed be higher than given by Eq. (14.21), which assumes s ¼ 0 and

dj/dx ¼ 0 at that interface; and/or (2) the presence of even small amounts of soluble

contaminants in the films will lower psat in Eq. (14.22), which will result in a large increase

in the thickness of the film at any given value of p (Pashley, 1980).

n n n

Worked Example 14.4
Question: What are the thermodynamic equilibrium radii of the charged water droplets of

Problem 3.7 after fragmentation in an atmosphere of relative humidity pvap=psat ¼ 50% at 20�C?
Answer: The surface tension or energy of a surface g is defined by the isothermal work done

on changing the area of the surface: dG ¼ gdA. For a water droplet with a net charge Q

uniformly distributed on its surface, G ¼ 4pR2g0 þQ2=8p30R, where g0 is the surface tension

of pure water (g0 ¼ 73 � 10�3 N m�1 at T ¼ 293 K), and A ¼ 4pR2 is the surface area. This gives

g ¼ g0ð1�Q2=64p230g0R
3Þ. At thermodynamic equilibrium, the Laplace pressure of the

droplet, given by Eq. (17.15): P ¼ 2g/R, equals the pressure of the undersaturated vapor, given

by Eq. (14.22): P ¼ �ðRT=V Þlogðpvap=psatÞ, where V ¼ 18 ml is the molar volume of water.4

When there is only one charge left per droplet, Q ¼ e, the average equilibrium radius of each

droplet will therefore be (8.3 � 293/18 � 10�6)loge0.5 ¼ �9.4 � 107 ¼ 2 � 0.073[1 � (1.602 �
10�19)2/(64p2 � 8.854 � 10�12 � 0.073R3)]/R , which is satisfied by R ¼ 0.37 nm, corresponding

to a droplet containing about 6 water molecules around the ion.

4For water, based on molar parameters, R/V ¼ 8.3/18 � 10�6 ¼ 4.6 � 105 N m�2 K�1. This can also be

expressed in terms of molecular parameters: k/v ¼ 1.38 � 10�23/30 � 10�30 N m�2 K�1.

n n n

14.9 Limit of Small Separations: Osmotic Limit
and Charge Regulation

At small separations, asD/ 0, it is easy to verify from Eq. (14.12) that K 2/�sze/303kTD
(note that K 2 is positive since s and z must have opposite signs). Thus, the repulsive

pressure P of Eq. (14.19) approaches infinity according to

PðD / 0Þ ¼ �2skT=zeD: (14.23)

From Eqs. (14.13) and (14.11) we further find that as D/ 0 the counterion density profile

between the surfaces becomes uniform and equal to

rx z rs z r0 z �2s=zeD at all x: (14.24)

Since �2s/zeD is the number density of counterions in the gap, this means that the

limiting pressure of Eq. (14.23) is simply the osmotic pressure P ¼ rkT of an ideal gas at
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the same density as the trapped counterions. This is known as the osmotic limit, which

applies to any system where ions, atoms, or molecules remain confined or trapped

between two surfaces as they approach each other. In the present case the trapping is due

to the requirement of maintaining electroneutrality in the gap that prevents the coun-

terions from going into the surrounding bulk liquid reservoir; in other cases it may be due

to the covalent attachment of, for example, polymer molecules to the surfaces. Yet in

other cases the trappedmoleculesmay indeed leave the gap, in which case the density r is

not proportional to 1/D and the resulting pressure can be repulsive, attractive, or oscil-

latory, as discussed in later chapters.

The infinite pressure asD/ 0 implied by Eq. (14.23) is, of course, unrealistic and arises

from the assumption that the total number of ions in the gap does not change—that is,

that s ¼ constant, which further implies that the surfaces remain fully ionized even when

there is a very large pressure pushing the counterions back against the surfaces. In practice

when two surfaces are finally forced into molecular contact the counterions are forced to

readsorb onto their original surface sites. Thus, as D approaches zero the surface charge

density s also falls—that is, s becomes a function ofD. This is known as charge regulation,

and its effect is to reduce the repulsion below that calculated on the assumption of

constant surface charge. Charge regulation can also arise at isolated surfaces from

changes in the solution conditions (rather than from a change in D). These two mecha-

nisms are interdependent and are discussed further in Section 14.17. In addition, other

effects and forces can also come in at small separations, and these can be equally

important in determining the short-range and especially the adhesion forces at contact.

14.10 Charged Surfaces in Electrolyte Solutions
It is far more common for charged surfaces or particles to interact across or in a solution

that already contains electrolyte ions (dissociated inorganic salts). In animal fluids, ions

are present in concentrations of about 0.2 M, mainly NaCl or KCl with smaller amounts of

MgCl2 and CaCl2. The oceans have a similar relative composition of these salts but at

a higher total concentration, about 0.6 M. Note that even “pure water” at pH 7 is strictly

an electrolyte solution containing 10�7 M of H3O
þ and OH� ions, which cannot always be

ignored. For example, for a charged isolated surface exposed to a solvent containing no

added electrolyte ions (only the counterions), Eqs. (14.9) and (14.12) readily show that for

the isolated surface, for whichD/N, we obtain KD/p and js/N. As we shall see, this

unrealistic situation is removed as soon as the bulk solvent contains even the minutest

concentration of electrolyte ions.

The existence of a “bulk reservoir” of electrolyte ions has a profound effect not only on

the electrostatic potential but also on the forces between charged surfaces, and in the rest

of this chapter we shall consider this interaction as well as the total interaction when the

ever-present van der Waals force is added. But to understand the double-layer interaction

between two surfaces it is necessary to first understand the ionic distribution adjacent to

an isolated surface in contact with an electrolyte solution. Consider an isolated surface, or
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two surfaces far apart, in an aqueous electrolyte (Figure 14.7). For convenience, we shall

put x ¼ 0 at the surface rather than at the midplane. Now, all the fundamental equations

derived in the previous sections are applicable to solutions containing different types of

ions i (of valency zi) so long as this is taken into account by expressing the net charge

density at any point x as
P

i

zierxi and the total ionic concentration (number density) as
P

i

rxi. Thus, Eq. (14.2) for the Boltzmann distribution of ions i at x now becomes.

rxi ¼ rNie
�ziejx=kT (14.25)

while at the surface, at x ¼ 0, the contact values of r and j are related by

r0i ¼ rNie
�ziej0=kT; (14.26)

where rNi is the ionic concentration of ions i in the bulk (at x ¼ N) where jN ¼ 0. For

example, if we have a solution containing HþOH� þNaþCl� þ Ca2þCl�2 , etc., wemaywrite

Solution values Contact values

½Hþ�x ¼ ½Hþ�Ne�ejx=kT ; ½Hþ�0 ¼ ½Hþ�Ne�ej0=kT ;

½Naþ�x ¼ ½Naþ�Ne�ejx=kT ; ½Naþ�0 ¼ ½Naþ�Ne�ej0=kT ;

½Ca2þ�x ¼ ½Ca2þ�Ne�2ejx=kT ; ½Ca2þ�0 ¼ ½Ca2þ�Ne�2ej0=kT ;

½Cl��x ¼ ½Cl��Neþejx=kT ; ½Cl��0 ¼ ½Cl��Neþej0=kT ;

(14.27)
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FIGURE 14.7 Near a negatively charged surface there is an accumulation of counterions (ions of opposite charge to
the surface coions) and a depletion of coions, shown graphically below for a 1:1 electrolyte, where rN is the electrolyte
concentration in the bulk or “reservoir” at x ¼ N. Counterions can adsorb to the surface in the dehydrated, partially
hydrated, or fully hydrated state. The OHP is the plane beyond which the ions obey the Poisson-Boltzmann equation.
This plane is usually farther out than the van der Waals plane.
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where [Naþ], and so on are expressed in some convenient concentration unit such as

M (1 M ¼ 1 mol dm�3 and corresponds to a number density of r ¼ 6.022 � 1026 m�3).

14.11 The Grahame Equation
Let us now find the total concentration of ions at an isolated surface of charge density s.
From Eq. (14.8) this is immediately given by

X

i

r0i ¼
X

i

rNi þ s2=2303kT ðin number per m3Þ: (14.28)

Thus, for s ¼ �0.2 C m�2 (corresponding to one electronic charge per 0.8 nm2 or 80Å2) at

25�C, we find s2/2303kT¼ 7.0� 1027 m�3¼ 11.64 M. For a 1:1 electrolyte such as NaCl, the

surface concentration of ions in this case is

½Naþ�0 þ ½Cl��0 ¼ 11:64þ ½Naþ�N þ ½Cl��N ¼ 11:64þ 2½Naþ�N ¼ 11:64þ 2½NaCl� M; (14.29a)

while for a 2:1 electrolyte such as CaCl2,

½Ca2þ�0 þ ½Cl��0 ¼ 11:64þ ½Ca2þ�N þ ½Cl��N ¼ 11:64þ 3½Ca2þ�N ¼ 11:64þ 3½CaCl2�M;

(14.29b)

where [NaCl] and [CaCl2] are the bulk molar concentrations of the salts. The ions at the

surface are, of course, mainly the counterions (e.g., Naþ or Ca2þ at a negatively charged

surface) and their excess concentration at the surface over that in the bulk is seen to be (1)

dependent solely on the surface charge density s—that is, independent of the bulk

electrolyte concentration—and (2) of magnitude sufficient to balancemuch of the surface

charge (cf. Sections 14.4 and 14.15).

We may now find the relation between the surface charge density s and the surface

potential j0. Incorporating Eq. (14.26) into Eq. (14.28), we obtain for the case of a mixed

NaCl þ CaCl2 electrolyte:

s2 ¼ 2303kT

�

X

i

r0i �
X

i

rNi

�

¼ 2303kTf½Naþ�Ne�ej0=kT þ ½Ca2þ�Ne�2ej0=kT þ ½Cl��Neþej0=kT � ½Naþ�N � ½Ca2þ�N � ½Cl��Ng:

On further noting that [Cl�]N ¼ [Naþ]N þ 2[Ca2þ]N the above becomes

s2 ¼ 2303kTf½Naþ�Nðe�ej0=kT þ eþej0=kT � 2Þ þ ½Ca2þ�Nðe�2ej0=kT þ 2eþej0=kT � 3Þg;

so that finally we obtain the Grahame equation (Grahame, 1953)

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8303kT
p

sinhðej0=2kTÞf½Naþ�N þ ½Ca2þ�Nð2þ e�ej0=kT Þg1=2

¼ 0:117sinhðj0=51:4Þf½NaCl� þ ½CaCl2�Nð2þ e�j0=25:7Þg1=2 C m�2 (14.30)

at 25�C, where the bulk concentrations [NaCl] ¼ [Naþ]N and [CaCl2] ¼ [Ca2þ]N are in M,

j0 in mV, and s in C m�2 (1 C m�2 corresponds to one electronic charge per 0.16 nm2 or
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16Å2). For example, a surface having a typical potential of �75 mV in, say, physiological

saline solution (150 mM NaCl) has a surface charge density of s ¼ 0.117
ffiffiffiffiffiffiffiffiffiffiffiffi

0:150
p

sinh(�75.0/51.4) ¼ �0.0922 C m�2. Thus, each charge occupies 0.16/0.092 z 1.7 nm2 or

~170Å2, the mean separation between charges on the surface being about 13Å. Equation

(14.30) allows us to calculate s once j0 is known, or vice versa, from which the indi-

vidual counterion concentrations at each surface r0i can be obtained using Eqs. (14.26)

or (14.27). We shall now consider some implications of the Grahame equation, bearing

in mind that it does not predict s or j0, but just relates them.

14.12 Surface Charge and Potential of
Isolated Surfaces

For an aqueous 1:1 electrolyte solution such as NaCl against a negatively charged surface

of s ¼ �0.2 C m�2, we obtain the potentials shown in the middle column of Table 14.1.

Note that for no electrolyte we obtain an infinite potential, which is unrealistic; a pure

liquid such as water will always contain some dissociated ions. It is for this reason that we

did not consider an isolated surface in the absence of bulk electrolyte ions in Section 14.5.

From Table 14.1 we find that at constant surface charge density the surface potential falls

progressively as the electrolyte concentration rises. From the tabulated values of j0 we

can determine the ionic concentrations at the surface using Eq. (14.27). For example, in

10�7 M 1:1 electrolyte, where j0 z �477.1 mV, we obtain 10�7 � eþ477.1/25.69 ¼ 11.64 M

for the counterions, and 10�7 � e�477.1/25.69 z 10�15 M for the coions. In 1 M, where

j0 ¼ �67.0 mV, we obtain 13.57 M and 0.07 M for the counterions and coions, respec-

tively, which total 13.64 M. As expected, the total concentration of all the ions at the

surface agrees exactly with that predicted by Eq. (14.29).

In most cases neither s nor j0 remains constant as the solution conditions change.

This is because ionizable surface sites are rarely fully dissociated but are partially

neutralized by the binding of specific ions from the solution. Such ions or surfaces are

Table 14.1 Variation of Surface Potential with Aqueous Electrolyte
Concentration for a Planar Surface of Charge Density �0.2 C m�2 as
Deduced from the Grahame Equation, Eq. (14.30).

j0 (mV)
1:1 Electrolyte
Concentration (M)

Pure 1:1 Electrolyte
Solution

Bulk Solution Also Contains
3 mM 2:1 Electrolyte

0 (hypothetical) �N �106
10�7 (pure water) �477 �106
10�4 �300 �106
10�3 �241 �106
10�2 �181 �105
10�1 �123 �100
1 �67 �66
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often referred to as exchangeable ions or surfaces, in contrast to those inert ions that do

not bind to the surface. For example, if only protons can bind to a negatively charged

surface, the equilibrium condition at the surface is given by the familiar mass action

equation (Payens, 1955). Thus, for the reaction

SH%
Kd

S� þHþ at the surface;

where Kd is the surface dissociation constant. We may express the proton concentration

at the surface as [Hþ]0, the concentration or surface density of negative (dissociated)

surface sites as [S�]0, and the density of neutral (undissociated) sites as [SH]0. The surface

charge density s is related to [S�]0 via s¼�e[S�]0. Proton concentrations [Hþ] are usually
given in pH units, defined by pH ¼ �log10[H

þ].5 The surface dissociation constant Kd is

defined by

Kd ¼ ½S��0½Hþ�0
½SH�0

(14.31)

¼ s0a

s0ð1� aÞ½H
þ�0 ¼ a

ð1� aÞ½H
þ�Ne�ej0=kT ; (14.32)

where s0 is the maximum possible charge density (i.e., if all the sites were dissociated)

and a is the fraction of sites actually dissociated.

Another important property of an ionizable surface is its pK value, which is the bulk

pH5 at which half of its charged sites are dissociated (a ¼ 0.5). At this point Eq. (14.32)

shows that Kd ¼ [Hþ]Ne�ej0/kT. Thus, the pK can be directly equated with the dissociation

constant. For example, if half the sites are dissociated at [Hþ]N ¼ ½Hþ�pKN ¼ 10�4 M (pH

4.0), we would say that the pK of the surface is 4.0. If both Kd and j0 remain constant as

the pH changes, then at any different [Hþ]N or pH the fraction of dissociated sites can be

written as

a ¼ Kd

Kd þ ½Hþ�Ne�ej0=kT
¼ ½Hþ�pKN

½Hþ�pKN þ ½Hþ�N
¼ 10�4

10�4 þ ½Hþ�N
: (14.33)

Thus, at pH 3 (corresponding to ten times the proton concentration at the pK) we find

a ¼ 0.09, while at pH 5 (ten times lower proton concentration) we find a ¼ 0.91.

For a mixed 1:1 electrolyte consisting of inert (non-surface-binding) and surface-

binding Hþ ions—for example, a mixture of NaCl and HCl—Eq. (14.32) can be combined

with the Grahame equation to give the simultaneous equations

s ¼ as0 ¼ Kds0=ðKd þ ½HCl�Ne�j0=25:7Þ ¼ 0:117 sinhðj0=51:4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½NaCl�N þ ½HCl�N
q

(14.34)

in which both s and j0 can now be totally determined in terms of the maximum charge

density s0 and dissociation constant Kd. It is clear from the above that if Kd is very

5Note that if the pH is defined in terms of the concentration (number density) of protons, then the surface

pH of �log10[H
þ]0 is different from the bulk pH of �log10[H

þ]N. However, if the pH is defined in terms of

the activity of the protons, the two values are identical, since they are now being equated with the chemical

potential of the protons.
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large (high surface charge, weak binding of protons), then s z s0 z constant, and we

obtain the earlier result for the case of fixed surface charge density. However, if Kd takes

on a more typical value, the effect can be quite dramatic. For example, if Kd ¼ 10�4 M,

then for a surface of s0 ¼ �0.2 C m�2 in a 0.1 M NaCl bulk solution at pH 7, we find j0 ¼
�118 mV and a ¼ 0.91—that is, the protons have neutralized 9% of the surface sites, and

j0 is not very different from the value in the absence of protons (see Table 14.1). But at

pH 5 we obtain j0 ¼ �73 mV and a ¼ 0.36—that is, only 36% of the sites now remain

dissociated even though the bulk concentration of HCl is a mere 0.01% of the NaCl

concentration. Under such conditions the proton is referred to as a potential determining

ion. Thus, both j0 and s will vary as the salt concentration or pH is changed, but the

surface will always remain negatively charged.

More generally, a surface may contain both anionic (e.g., acidic) and cationic (e.g.,

basic) groups to which various cations and anions can bind. Such surfaces are known as

amphoteric, and the competitive adsorption of ions to them can be analyzed by assigning

a binding constant to each ion type, and then incorporating these into the Grahame

equation (Healy and White, 1978; Chan et al., 1980a). The charge density of amphoteric

surfaces (e.g., protein surfaces) can be negative or positive depending on the electrolyte

conditions. At the isoelectric point (iep) or point of zero charge (pzc) there are as

many negative charges as positive charges so that the mean surface charge density is zero

(s ¼ 0), although it is important to remember that there may still be local regions of high

negative or positive charge. Such discrete local charges become crucially important for

determining the short-range and adhesion forces between amphoteric surfaces and

biological macromolecules, and we return to consider such acid-base and protein-

substrate interactions in later sections and in Part III.

14.13 Effect of Divalent Ions
The presence of divalent cations has a dramatic effect on the surface potential and

counterion distribution at a negatively charged surface. For example, if all the NaCl

solutions of Table 14.1 also contain 3 � 10�3 M CaCl2, the Grahame equation gives the

potentials shown in the third column. We see that even at constant surface charge

density, relatively small amounts of divalent ions substantially lower the magnitude of j0,

in fact, about 100 times more effectively than increasing the concentration of monovalent

salt. Indeed, j0 is determined solely by the divalent cations once their concentration is

greater than about 3% of the monovalent ion concentration, and for 2:1 electrolyte

concentrations above a few mM, typical surface potentials are well below �100 mV

irrespective of the 1:1 electrolyte concentration.

Further, even when the bulk concentration of Ca2þ is much smaller than that of Naþ,
the surface may have a much higher local concentration of Ca2þ. For example, in 100 mM

NaCl þ 3 mM CaCl2, where j0 ¼ �100 mV (see Table 14.1) the concentration of Ca2þ at

the surface is [Ca2þ]0z 3�10�3 e+200/25.7z 7M compared to [Naþ]0z 0.1 eþ100/25.7z 5M.
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At such high surface concentrations (of doubly charged ions) divalent ions often bind

chemically to negative surface sites, thereby lowering s and reducing j0 even further, and

it is not unusual for surfaces to be completely neutralized (s/ 0, j0/ 0) in the presence

of mM amounts of Ca2þ. In the case of trivalent ions such as La3þ, bulk concentrations in

excess of 10�5 M can neutralize a negatively charged surface and even lead to charge

reversal wherein the cations continue to adsorb onto a surface that is already net posi-

tively charged (see Problem 3. 2(ii)).

As in the case of monovalent ion binding, the effect of divalent ion binding can be

dealt with quantitatively by incorporating the appropriate binding constants into the

Grahame equation (Healy and White, 1978; McLaughlin et al., 1981), and when many

different ionic species (e.g., Ca2þ, Hþ) compete for binding sites the variation of j0 and s

with electrolyte concentration and pH can be quite complex. In most cases ion binding

tends to lower both s and j0 as the concentrations of these ions increase, and we may

anticipate that such effects lead to a substantial reduction in the repulsive double-layer

forces between surfaces.

14.14 The Debye Length
For low potentials, below about 25 mV, the Grahame equation simplifies to

s ¼ 303kj0; (14.35)

where

k ¼
�

X

i

rNie
2z2i =303kT

�

1=2
m�1: (14.36)

Thus, the potential becomes proportional to the surface charge density. Equation (14.35)

is the same as Eq. (14.14) for a capacitor whose two plates are separated by a distance 1/k,
have charge densities �s, and potential difference j0. This analogy with a charged

capacitor gave rise to the name diffuse electric double-layer for describing the ionic

atmosphere near a charged surface, whose characteristic length or “thickness” is known

as the Debye length, 1/k.

The magnitude of the Debye length depends solely on the properties of the solution

and not on any property of the surface such as its charge or potential. For a monovalent

electrolyte (z ¼ 1) at 25�C (298K) the Debye length of aqueous solutions is

k�1 ¼ ð303kT=2rNe2 Þ1=2 ¼
�

8:854� 10�12 � 78:4� 1:381� 10�23� 298

2� 6:022� 1026�ð1:602� 10�19Þ2M

�1=2

¼ 0:304� 10�9=
ffiffiffiffiffi

M
p

m:

Thus,

0:304=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi½NaCl�p

nm for 1:1 electrolytes ðe:g:;NaClÞ
1=k ¼ 0:176=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½CaCl2�
p

nm for 2:1 and 1:2 electrolytes ðe:g:;CaCl2; Na2SO4Þ
0:152=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½MgSO4�
p

nm for 2:2 electrolytes ðe:g:;MgSO4Þ
(14.37)
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For example, for NaCl solution, 1/k¼ 30.4 nm at 10�4 M, 9.6 nm at 1mM, 0.96 nm at 0.1 M,

and 0.3 nm at 1M. In totally pure water at pH 7, the Debye length is 960 nm, or about 1 mm.

14.15 Variation of Potential jx and Ionic
Concentrations rx Away from a Surface

The potential gradient at any distance x from an isolated surface is given by Eq. (14.7):

X

i

rxi ¼
X

i

rNi þ
303

2kT

�

dj

dx

�2

x

: (14.38)

For a 1:1 electrolyte this gives

dj=dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8kTrNi=303
p

sinhðejx=2kTÞ;
which may be readily integrated using the integral !cschX dX ¼ log tanh(X/2) to yield

jx ¼ 2kT

e
log

�

1þ ge�kx

1� ge�kx

�

z
4kT

e
ge�kx; (14.39)

where6

g ¼ tanhðej0=4kTÞ ¼ tanh½j0ðmVÞ=103� at 25�C: (14.40)

This is known as the Gouy-Chapman theory. For high potentials g/1, while for poten-

tials less than 25 mV, Eq. (14.39) reduces to the so-called Debye-Hückel equation

jx z j0e
�kx; (14.41)

where again the Debye length 1/k appears as the characteristic decay length of the

potential [see Verwey and Overbeek (1948) and Hiemenz (1997) for a fuller discussion of

the Gouy-Chapman and Debye-Hückel theories].

The above equations apply to symmetrical 1:1 electrolyte solutions, such as NaCl.

Equations that apply to asymmetrical electrolytes—for example, 2:1 and 1:2 electrolytes

such as CaCl2 and Na2SO4—have been derived by Grahame (1953). These are more

complicated than Eq. (14.39), but for low j0 they all reduce to jx ¼ j0e
�kx.

We now have all the equations needed for computing the ionic distributions away from

a charged surface. For a 1:1 electrolyte, this is given by inserting Eq. (14.39) into Eq. (14.25)

or (14.27). Figure 14.8 shows the variation of jx and rx for a 0.1 M 1:1 electrolyte, together

with a Monte Carlo simulation for comparison. Note how the counterion density

approaches the bulk value much faster than would be indicated by the Debye length.

Indeed, for such a high surface charge density and potential the counterion distribution

very near the surface is largely independent of the bulk electrolyte concentration, and it is

left as an exercise for the reader to verify that even in 10�4M the counterion profile over the

first few ångstroms is notmuch different from that in 0.1M (so long as s remains the same).

6 tanh x ¼ (ex � e�x)/(ex þ e�x).
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14.16 Electrostatic Double-Layer Interaction Forces
and Energies between Various Particle Surfaces

The interaction pressure between two identically charged surfaces in an electrolyte

solution (Figure 14.9) can be derived quite simply as follows. First, from Section 14.7 we

note that at any point x the pressure Px(D) is given by
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FIGURE 14.8 Potential and ionic density profiles for a 0.1 M monovalent electrolyte such as NaCl near a surface of
charge density s ¼ �0.0621 C m�2 (about one electronic charge per 2.6 nm2), calculated from Eqs. (14.39) and (14.25)
with j0 ¼ �66.2 mV obtained from the Grahame equation. The crosses are the Monte Carlo results of Torrie and
Valleau (1979, 1980). Note that the potential (and force between two surfaces) both decay asymptotically as e�kx,
while the ionic concentrations decay much more sharply.
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PxðDÞ � PxðNÞ ¼ �1

2
303

��

dj

dx

�2

xðDÞ
�
�

dj

dx

�2

xðNÞ

�

þ kT

�

X

i

rxiðDÞ �
X

i

rxiðNÞ
�

: (14.42)

Second, from Eq. (14.7) we have
X

i

rxi ¼
X

i

rmi þ
303

2kT

�

dj

dx

�2

x

(14.43)

for any x or D, where Srmi is the total ionic concentration at the midplane at x ¼ 1
2D.

Incorporating Eq. (14.43) into Eq. (14.42), and again putting Px(D ¼ N) ¼ 0, yields two

useful and equivalent expressions for the pressure:

PxðDÞ ¼ kT

�

X

i

r0iðDÞ �
X

i

r0iðNÞ
�

¼ kT

�

X

i

rmiðDÞ �
X

i

rmiðNÞ
�

(14.44)

which, as before, is the uniform pressure across the gap (independent of position x)

acting on the electrolyte ions and on the surfaces. The above result is essentially the

same as Eqs. (14.17) and (14.18) and shows that P is simply the excess osmotic pressure of

the ions at the surfaces or in the midplane. Since Srmi(N) is known from the bulk elec-

trolyte concentration the problem reduces to finding the midplane concentration of ions

rmi(D) when D is finite, and it is here that certain assumptions have to be made to obtain

an analytic result (Verwey and Overbeek, 1948). For a 1:1 electrolyte such as NaCl,

Eq. (14.44) may be written as

P ¼ kTrN½ðe�ejm=kT � 1Þ þ ðeþejm=kT � 1Þ� ¼ 2kTrN½coshðejm=kTÞ � 1�
cations anions

(14.45)

ze2j2
mrN=kT for jm < 25 mV; (14.46)

Bulk electrolyte reservoir

0 0m

x = 0 x = D

x = 1/2 D

FIGURE 14.9
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which assumes that the midplane potential jm (not the surface potential j0) is small. If

we further assume that jm is simply the sum of the potentials from each surface at x¼ 1
2D

as previously derived for an isolated surface, then Eq. (14.39) gives jm z 2(4kTg/e)e�kD/2.

Inserting this into Eq. (14.46) gives the final result for the repulsive pressure between two

planar surfaces across a 1:1 electrolyte:

P ¼ 64kTrNg2e�kD ¼ ð1:59� 108Þ½NaCl�g2e�kD N m�2 at 25�C ð298 KÞ; (14.47)

where we note that g¼ tanh(zej0/4kT) can never exceed unity. Equation (14.47) is known

as the weak overlap approximation or linear superposition approximation (SLA) for the

interaction between two similar surfaces at constant potential.

The interaction free energy per unit area corresponding to the above pressure is

obtained by a simple integration with respect to D, and gives

Wflats ¼ ð64kTrNg2=kÞe�kD (14.48)

¼ 0:0482½NaCl�1=2 tanh2½j0ðmVÞ=103�e�kD J m�2 ðfor 1:1 electrolytesÞ (14.49)

¼ 0:0211½MgSO4�1=2 tanh2½2j0ðmVÞ=103�e�kD J m�2 ðfor 2:2 electrolytesÞ; (14.50)

where in the above equations the bulk concentrations [NaCl] and [MgSO4] are in M. There

is no simple expression for 2:1 or 1:2 electrolytes, or for mixed 1:1 and 2:1 electrolytes

(Chan, 2002), but it is interesting to note that for surface potentials between 50 and 80 mV

the values of 0.0482 tanh2 [j0/103] and 0.0211 tanh2 [2j0/103] differ by less than 20%,

suggesting that either of the above equations provides a good approximation so long as the

correct Debye length is used (which can always be accurately calculated using Eq. (14.36).

Applying the Derjaguin approximation, Eq. (11.16), we may immediately write the

expression for the force F between two spheres of radius R as F ¼ pRW, from which the

interaction free energy is obtained by a further integration (see Sader et al., 1995, for more

accurate formulae for spheres):

Wspheres ¼ ð64pkTRrNg2=k2Þe�kD ¼ 4:61� 10�11Rg2e�kD J ðfor 1:1 electrolytesÞ: (14.51)

We see therefore that the double-layer interaction between surfaces or particles of

different geometries always decays exponentially with distance with a characteristic

decay length equal to the Debye length. This is quite different from the van der Waals

interaction where the decay is a power law having very different exponents for different

geometries. Figure 13.1 gave the different expressions for the van der Waals forces and

energies between bodies of different geometries in terms of their dimensions and the

Hamaker Constant. Figure 14.10 is a similar figure for the double-layer forces and

energies, given in terms of the dimensions of the particles, the Debye length k�1, and an

“interaction constant” Z defined by

Z ¼ 64p303ðkT=eÞ2 tanh2ðzej0=4kTÞ J m�1or N (14.52)

¼ ð9:22� 10�11Þ tanh2ðj0=103Þ J m�1 at 25�C or 298 K ðroom temperature Þ (14.53)

¼ ð9:38� 10�11Þ tanh2ðj0=107Þ J m�1 at 37�C or 310 K ðphysiological temperatureÞ (14.54)
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where j0 is in mV. The interaction constant Z is analogous to the Hamaker Constant A,

and—apart from the electrolyte valency z—depends only on the properties of the

surfaces. The other terms that appear in the expressions for the interaction energies and

forces, such as k, depend only on the solution and on the geometry and separation of the

Electric ‘Double-layer’ Interaction
Geometry of bodies with 

surfaces D apart (D«R)
Energy, W Force, F= –dW/dD 

Two ions or small
charged molecules

Two flat surfaces
(per unit area)

WFlat =( / 2π)Ze−κD

Two spheres or
macromolecules of
radii R1 and R2

Sphere or macro-
molecule of radius R
near a flat surface

Two parallel
cylinders or rods of
radii R1 and R2 (per
unit length)

Cylinder of radius R
near a flat surface
(per unit length)

Two cylinders or
filaments of radii R1
and R2 crossed at 90° R1R2Ze

−κD

R1R2

R1 + R2
Ze

−κD

2π

κ
1/2

1/2

κ 1/2

R1R2

R1 + R2
Ze

−κD

2π

κ 3/2
1/2
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R1 + R2
Ze

−κD

RZe
−κD
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Also F = 2πRWFlat

2π
Ze

−κD

2π

R

κ Ze
−κD

(  2 / 2π)Ze−κD

+z1z2e
2

4πε0εr 2 (1+

(1+ r)

)
e

−κ(r )+z1z2e
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Also F=2π WFlat
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FIGURE 14.10 Electrostatic double-layer interaction energies W(D) and forces (F ¼ �dW/dD) between similar
constant potential surfaces of different geometries in terms of the interaction constant Z defined by Eq. (14.52). For
a monovalent 1:1 electrolyte such as NaCl (z¼ 1), Z¼ 64p303(kT/e)

2 tanh2(ej0/4kT)¼ (9.22� 10�11 tanh2(j0/103) J m
�1at

25�C and (9.38� 10�11) tanh2(j0/107) J m
�1 at 37�C (body temperature). The Debye length, k�1, is defined by Eq. (14.36).
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surfaces. Note that the interaction constant Z is defined in terms of the surface potential

j0 of the isolated surfaces (at D ¼ N), but it can also be expressed in terms of the surface

charge density s by applying the Grahame Equation.

As an example of the use of Figure 4.10, the double-layer energy for two identical

spheres of radius R is given in the 4th row as W ðDÞ ¼ Z R1R2 e
�kD=ðR1 þ R2Þ ¼

1
2 ZR e�kD ¼ (4.61 � 10�11)R tanh2(j0/103)e

�kD J, which is the same as Eq. (14.51).

It is important to note thatwith increasing ionic strength, even though theDebye length

falls due to the increased screening of the electric field, the asymptotic short-range force or

energy can increase, depending on the geometry of the particles. This unintuitive result

arises for those geometries in Figure 14.10, where k appears in the numerator, for example,

as occurs for both the energy and force between two planar surfaces. For such systems, as

D/ 0 and e�kD/ 1, the repulsion at constant potential (Z¼ constant) is seen to increase

with increasing ionic strength (increasing k). This has important implications for the short-

range and adhesion forces in aqueous solutions, as discussed later (cf. Figure 14.15).

At low surface potentials, below about 25 mV, all the above equations simplify to the

following: For two planar surfaces,

P z 2303k
2j2

0e
�kD ¼ 2s2e�kD=303 Nm�2 (14.55)

and

W z 2303kj
2
0e

�kD ¼ 2s2e�kD=k303 J m�2 (14.56)

while for two spheres of radius R,

F z 2pR303kj
2
0e

�kD ¼ 2pRs2e�kD=k303 N (14.57)

and
W z 2pR303j

2
0e

�kD¼ 2pRs2e�kD=k2303 J: (14.58)

In the above, j0 and s are related by s ¼ 303kj0, which, as we have seen, is valid for low

potentials. These four equations are quite useful because they are valid for all electrolytes,

whether 1:1, 2:1, 2:2, 3:1, or even mixtures as long as the appropriate Debye lengths are

used as given by Eqs. (14.36)–(14.37). Thus, they are particularly suitable when divalent

ions are present, since the surface charge and potential is often low due to ion binding.

14.17 Exact Solutions for Constant Charge and
Constant Potential Interactions: Charge
Regulation

All the expressions derived so far are accurate only for surface separations beyond about

one Debye length. At smaller separations one must resort to numerical solutions of the

Poisson-Boltzmann equation to obtain the exact interaction potential (Verwey and

Overbeek, 1948; Devereux and De Bruyn, 1963; Honig and Mul, 1971) for which there are

no simple expressions that cover all possible situations. Figures 14.11 and 14.12 show
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FIGURE 14.11 Repulsive double-layer interaction energy for two planar surfaces in a 1:1 electrolyte [exact solution
kindly computed by M. Sculley, R. Pashley, and L. White based on Ninham and Parsegian (1971)]. j0 is the potential of
the isolated surfaces and C the electrolyte concentration in M, which is related to the Debye length by 1/k ¼ 0.304/
ffiffiffiffi

C
p

nm. Theoretically, the double-layer interaction must lie between the constant-charge and constant-potential
limits. (---) constant charge, (—) constant potential. However, these limits are based on the validity of the Poisson-
Boltzmann (PB) equation; if other forces, such as ion-correlation, hydrophobic, or steric-hydration, are present, the
interaction can be more attractive or more repulsive. At separations greater than 1/k the forces and energies are well
described by Eqs. (14.47)–(14.51) for z ¼ 1.
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FIGURE 14.12 Repulsive double-layer interaction energy for two planar surfaces in a 2:1 electrolyte where the
counterions—that is, the ions of opposite charge to those on the surface—are divalent [computed as in Figure 14.11].
For 1:2 electrolytes (where the counterions are monovalent) the interaction is approximately as for a 1:1 electrolyte
but with the Debye length as for a 2:1 or 1:2 electrolyte—that is, Debye length 1/k ¼ 0.176/
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nm, where C is the
electrolyte concentration in M. (---) constant charge, (—) constant potential. At separations greater than 1/k the forces
are well described by Eqs. (14.47)–(14.51) for z ¼ 2.
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plots of the exact numerical solutions for the double-layer interaction potentials of two

planar surfaces in pure 1:1 and 1:2 electrolytes in the two limiting cases of constant charge

and constant potential. The figures may be used for reading off the interaction energy of

any 1:1 or 2:1 electrolyte at any desired concentration C, and surface separation D. This is

because the energy scales with
ffiffiffiffi

C
p

and the distance scales with the Debye length, k�1. The

constant potential curves of Figure 14.11 compare reasonably well with the approximate

expression of Eq. (14.48) even at small separations, and especially when j0 is between 50

and 100 mV. In contrast, as shown by the dashed curves in Figures 14.11 and 14.12,

interactions at constant charge are always greater than those at constant potential, espe-

cially at separations below 1–2 Debye lengths where they veer sharply upwards, becoming

infinite as D / 0, while the constant potential interaction tends toward a finite value.

In addition there is the question of charge regulation at small separations. In general,

neither the surface charge density nor the potential remain constant as two surfaces

come close together. Instead, as was discussed in Section 14.9, some of the counterions

are forced back onto the surfaces thereby reducing s. This affects the form of the inter-

action which now falls between the constant charge and constant potential limits. At large

distances, beyond a few k�1, all the interaction pressures and energies merge and are well

described by the equations based on the Linear Superposition Approximation as listed in

Figure 14.10.

If there is no binding, the surface charge density remains constant, and in the limit of

small D the number density of monovalent counterions between the two surfaces will

approach a uniform value of 2s/eD. From Eq. (14.44) the limiting pressure in this case is

PðD / 0Þ ¼ kT
X

i

rmi ¼ �2skT=zeD ¼ þj2skT=zeDj; (14.59)

and

W ðD / 0Þ ¼ ð�2skT=zeÞlogDþ constant; (14.60)

that is, as D / 0 the pressure and the energy become infinite. Note that this is the same

osmotic limit as in the case of no bulk electrolyte (counterions only), Eq. (14.23), and

results from the limiting osmotic pressure of the “trapped” counterions.

If there is counterion binding asD decreases—that is, charge regulation—P falls below

this limit, and the Poisson-Boltzmann equation must now be solved self-consistently by

including the dissociation constants of the adsorbing ions (cf. Section 14.12). The

computations have been described by Ninham and Parsegian (1971) and Healy et al.,

(1980), and simple numerical algorithms have been given by Chan et al., (1976, 1980b). So

long as the Poisson-Boltzmann equation remains valid, the double-layer forces between

two symmetrical charge-regulating surfaces always lie between the constant surface

charge and constant surface potential limits shown in Figures 14.11 and 14.12.7 When the

PB equation breaks down—for example, when the electrolyte contains multivalent

7Although Borkovec and Behrens (2008) have suggested that under certain conditions the double-layer

interaction can be weaker than at constant potential.
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counterions—or when other forces, such as ion-correlation forces, are present, then the

resulting interaction can be very different and even change sign—that is, become

attractive. And the situation becomes much more complex for asymmetric surfaces, even

in the absence of charge regulation.

An often overlooked feature of a charge-regulating interaction is that as two surfaces

approach each other there is a continual exchange of ions with the bulk reservoir. This

takes time. If two surfaces are brought together quickly, the interaction may be at

constant charge even though the equilibrium interaction is at constant potential (Raviv

et al., 2002; Anderson et al., 2010).8 And the issue is not only determined by the diffusion

of ions into and out of the interaction zone; quite often the ion exchange processes at the

interfaces is slow (minutes) and is the rate-limiting part of the overall interaction.

14.18 Asymmetric Surfaces
For two surfaces of different charge densities or potentials the interaction energy can

have a maximum or minimum at some finite distance, usually below 1/k. Approximate

equations for the interactions of two surfaces of unequal but constant potentials were

given by Hogg et al., (1966), Parsegian and Gingell (1972), Ohshima et al., (1982), and

Chan et al., (1995), and for unequal charges by Gregory (1975), and Ohshima (1995). The

“Hogg-Healy-Fuerstenau” equation (Hogg et al., 1966) for two planar surfaces of low

constant potentials in 1:1 electrolyte is

W ðDÞ ¼ 303k½2j1j2 � ðj2
1 þ j2

2Þe�kD�
ðeþkD � e�kDÞ J m�2 (14.61)

which leads to a pressure of

PðDÞ ¼ �dW

dD
¼ 2303k

2½ðeþkD þ e�kDÞj1j2 � ðj2
1 þ j2

2Þ�
ðeþkD � e�kDÞ2 N m�2: (14.62)

Approximate expressions for constant charge interactions are more complicated. The

following, proposed by Gregory (1975), is probably the simplest that is also reasonably

accurate for 1:1 electrolytes

PðDÞ ¼ rNkT

2

6

6

6

4

2

�

1þ
�

zeðj1 þ j2Þ=kT
eþkD=2 � e�kD=2

�2�1=2

�

�

zeðj1 � j2Þ=kT
�

2e�kD

1þ
�

zeðj1 þ j2Þ=kT
eþkD=2 � e�kD=2

�2
� 2

3

7

7

7

5

Nm�2: (14.63)

It is noteworthy that the double-layer forces between dissimilar surfaces can change

sign, depending on the conditions. For example, for constant potential interactions at

large separations, Eq. (14.62) tends to PðkD »1Þ ¼ 2303k
2 j1j2e

�kD. This is attractive when

j1 and j2 have opposite signs and repulsive when they have the same sign, and it reduces

8For a colloidal system at equilibrium, all the interactions are given by the equilibrium interaction potentials

even though the particles may be moving very rapidly in the solution. This is an example of Detailed Balance.
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to Eq. (14.55) when j1 ¼ j2. However, in the limit of D / 0, Eq. (14.62) tends to

PðD / 0Þ ¼ �303k ðj1 � j2Þ2=2D2 which is always negative—that is, attractive.

The constant charge interaction at large separations, Eq. (14.63), reduces to

PðkD »1Þ ¼ 4ðrNz2e2=kTÞ j1j2e
�kD ¼ 2303k

2 j1j2e
�kD ¼ 2k2s1s2e

�kD=303, which is the

same as the constant potential limit. However, in the limit of D / 0, Eq. (14.63) tends to

PðD / 0Þ ¼ þjðs1 þ s2Þ kT=zeDj; which reduces to Eq. (14.59) when s1 ¼ s2 and that is

always positive—that is, repulsive (see Problem 14.4).

All of the above equations assume no charge regulation and that the surface charges

are smeared out on each surface. Both of these assumptions are particularly dangerous

when the two surfaces are different. Such surfaces usually contain ion-exchangeable sites,

and their charges can often move about and redistribute as the surfaces come into

contact. Some of these issues, especially those involving “competitive adsorption,” have

been addressed by Ninham and Parsegian (1971), Prieve and Ruckenstein (1976), Chan

et al., (1980), Pashley (1981), Van Riemsdijk et al., (1986), Carnie and Chan (1993), and

Ettelaine and Buscall (1995), and are discussed again in later sections devoted to acid-

base interactions and the adhesion of amphoteric and biological surfaces.

At very large separations, above 1 mm or the dimensions of colloidal particles, there is

experimental evidence that the double-layer force can become weakly attractive even

between identical particles, which can result in phase separation (Ise and Yoshida,

1996). Sogami and Ise (1984) have proposed a potential—the “Sogami potential”—to

account for this effect, but it remains controversial both at the experimental and

theoretical levels.

14.19 Ion-Condensation and Ion-Correlation Forces
We may recall that for a system of charges that is overall electrically neutral the net

electrostatic (purely Coulombic) interaction is always attractive. This is the attraction that

leads to the formation of ionic crystals discussed in Section 3.4. However, as discussed

further in Section 3.8, in a medium of high dielectric constant such as water, the Coulomb

interaction is much reduced and thermal effects can now win out, causing the dissolution

of the ionic crystal. An important parameter that always arises when considering such

effects is the Bjerrum length lB, which is the distance r between the centers of two unit

charges when their Coulomb energy, w(r) ¼ e2=4p303r; equals the thermal energy kT—

that is,

lB ¼ e2=4p303kT (14.64)

¼ 0:72 nm in water at 25�C ð3 ¼ 78:3Þ:

The Bjerrum length appears often in equations associated with electrostatic interactions

in electrolyte solutions, such as double-layer, ion-condensation, and ion-correlation

interactions. For example, the Debye length, Eq. (14.36), can be expressed as

S
i
ð4plBrNi z

2
i Þ1=2; and the solubility of a 1:1 electrolyte, Eq. (3.18), can be expressed
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as Xs z e�lB=ðaþþa�Þ; where ðaþ þ a�Þ is the distance between the centers of the ions. In

Section 3.8 we saw how this equation accounts for the higher solubility or dissociation of

larger ions (larger aþ þ a�). For example, when ðaþ þ a�Þ ¼ lB we expect full dissociation

up to electrolyte concentrations of ~40% (mole/mole). For smaller and especially

multivalent ions such as Ca2þ, their tendency to dissociate is much reduced, and such

electrolytes or salts are much less soluble, and their ions in solution are often only

partially dissociated (or partially associated).

A similar effect arises at charged surfaces. Consider a small sphere of radius R where

the surface charges are separated by a mean distance d such that the total charge on the

sphere is Q ¼ ð4pR2=d2Þe. The Coulomb energy of bringing a small ion of radius a and

charge ze up to the sphere is zeQ=4p303ðRþ aÞ: For small similarly sized monovalent ions

(Q ¼ e, z ¼ 1) this reduces to the expected equation: w(r) ¼ e2=4p303ð2aÞ; but for a large

spheres (R » a) we obtain for the ion-surface binding energy:

w z zeQ=4p303R z 4pzkTRlB=d
2: (14.65)

This equation shows that at constant surface charge density (fixed d), the binding energy

of a (counter)ion to an oppositely charged surface is higher (1) for larger spheres or

particles (larger R), (2) the closer the surface co-ions are to each higher (smaller d, higher

s), and (3) the higher the valency, z, of the binding counterion. The first two conclusions

show that the size of a macromolecule or small colloidal particle is important in deter-

mining its surface charge density s and potential j0—the smaller the particle, the more

likely it is to be fully ionized.

The strength of ion binding also depends on the shapes or geometry of particles, being

stronger for planar surfaces, then cylindrical surfaces then spherical surfaces—an effect

that is referred to as charge, ion or “Manning” condensation (Manning, 1969; Ray and

Manning, 1996). For example, planar surfaces are generally less than 10% ionized or

dissociated, cylindrical (DNA or micelle) surfaces are typically ~20% ionized, small

spherical micelles are ~25% ionized (Pashley & Ninham, 1987), while individual ionizable

molecules, which can be considered as very small spheres, are often fully (close to 100%)

ionized. Equation (14.65) also shows why this effect is more pronounced for multivalent

counterions.

The effect of ion condensation is a reduced double-layer repulsion, especially between

planar and cylindrical structures such as clay sheets, charged lipid bilayers, DNA,

nanorods and microtubules in aqueous solutions, which is further enhanced when these

contain calcium or polyvalent ions (Bloomfield, 1991; Podgornik et al., 1994; Tang et al.,

1996). In reality, the binding energy of ions to surfaces in electrolyte solutions is much

more complex than given by Eq. (14.65) and depends, among other things, on the

absolute or relative values of R, a, lB, d, and k�1.

Whereas ion-condensation simply lowers the double-layer repulsion, there is another

counterion effect between similarly charged surfaces that gives rise to an attraction. This

is contrary to the Poisson-Boltzmann equation that predicts a repulsion at all separations

between equally charged surfaces. This additional electrostatic force was first proposed
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by Oosawa (1971) who considered the implications of having mobile (rather than fixed)

counterions in each double layer. These mobile ions, he argued, constitute a highly

polarizable (essentially conducting) layer at each interface whose fluctuations in density

must give rise to an attractive van der Waals�like force with another double-layer. This

force is not included in the Poisson-Boltzmann equation nor in the Lifshitz theory. Now

known as the ion-correlation or charge fluctuation force (Jonsson, 1980; Guldbrand et al.,

1984; Kjellander, 1988a) this attraction becomes significant at small distances (<4 nm),

and it increases with the surface charge density and valency of the counterions—just as

does the ion-condensation effect with which it is often associated (Rouzina and

Bloomfield, 1996; Gronbech-Jensen, 1997).

In the first Monte Carlo study of the ionic density distributions, interaction energies

and pressures between planar surfaces, spheres and cylinders, Wennerström and

colleagues (1982) concluded that between surfaces of high charge density the attractive

ion-correlation force can reduce the effective double-layer repulsion by 10�15% if the

counterions are monovalent. However, with divalent counterions such as Ca2þ the ion-

correlation attraction was found to exceed the double-layer repulsion—the net force

becoming overall attractive—below about 2 nm, even in dilute electrolyte solutions. Such

short-range attractive ion-correlation forces have been measured between anionic

surfactant and lipid bilayers in CaCl2 solutions, and they are believed to be responsible for

the strong adhesion or limited swelling of negatively charged clay surfaces in the presence

of divalent ions (Marra, 1986b, c; Khan et al., 1985; Kjellander et al., 1988a, b; Kjellander,

1990). Their importance in the interactions of colloidal, amphiphilic and biological

surfaces have yet to be fully established.

Similar ion-correlation interactions can arise between the surface co-ions of two

opposing surfaces if these are mobile, as occurs at surfactant and lipid bilayer and

biological membrane surfaces. Indeed, it has been suggested that when both the

counterions and coions are mobile, the final adhesion of the two surfaces can cause

them to order into a thin crystalline lattice (Rouzina and Bloomfield, 1996). Such

effects are usually specific and can be understood only by considering the surface

charges as discrete and of a certain size rather than as smeared out over the surfaces

(cf. Chapter 21).

Both ion-correlation and ion-condensation forces enhance adhesion; they are related

(Rouzina, 1996; Shklovskii, 1999) but are difficult to separate, quantify or simulate and, so

far, do not appear to be describable by a single simple force-law or potential function

although some have been proposed (Lau et al., 2000). Experimental examples of both of

these interactions are given in Part III.

Another effect that derives from the discreteness of surface charges is the “image

force” produced by a surface coion and its image on the opposite surface. As shown in

Figure 13.2, this produces a repulsive force when the two surfaces are in a medium (e.g.,

water) with a dielectric constant that is higher than those of the surfaces. However,

Ohshima (1995) has argued that for certain charge-regulating mechanisms the image

force can reduce the double-layer repulsion.
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14.20 More Complex Systems: Finite Reservoir Systems
and Finite Ion-Size Effects

We have seen how different are the interactions between charged surfaces in the

absence and presence of a bulk “infinite” reservoir of electrolyte ions at some given

concentration. In many cases the situation is not so simple. For example, the case of

“counterions only,” discussed in Sections 14.2-14.9 changes when some electrolyte is

present, and when the number of counterions coming off from the surfaces are

comparable to the number of background electrolyte ions already present in the system,

the equations for the ionic distributions and interaction forces become more compli-

cated and can only be solved numerically (Dubois et al., 1992). Such systems arise when

concentrated dispersions of clay sheets, micelles, bilayers or polyelectrolytes interact in

pure water or dilute salt solutions (Dubois et al., 1992; Diederichs et al., 1985; Delville

et al., 1993).

In some cases, simplifying assumptions can be made. Thus, it has been found that the

Debye length of a micellar or polyelectrolyte solution is given by Eq. (14.36) but where

only the background electrolyte ions and micellar or polyelectrolyte counterions

contribute to the ionic concentrations in that equation but not the micelles or poly-

electrolyte molecules themselves. For example, for a micellar system above the critical

micelle concentration (cmc) consisting of completely dissociated surfactant monomers at

a concentration Xcmc coexisting with micelles of concentration Xmic and aggregation

number N of which a fraction f are ionized (typically f z 0.25), the Debye length is given

by (Pashley and Ninham, 1987)

k2 ¼ e2

303kT
½2Xcmc þ ðNXmic � XcmcÞf �: (14.66)

Tadmor and colleagues (2002) derived a similar equation for polyelectrolyte solutions.

Finite ion size effects can play an important role in modifying the double-layer

interactions between surfaces at small separations. First, as discussed in Section 14.6, the

existence of a Stern Layer due to finite coion and/or counterion sizes does not necessarily

affect the functional form of the ionic distribution away from a surface; but it does shift

the plane of origin of the distribution (the Outer Helmholtz Plane or OHP) which effec-

tively changes the way D ¼ 0 is defined in equations for the forces. As will be discussed

further below, this can have important consequences in the presence of another force,

such as the van der Waals force, which may have a different plane of origin. Similar finite

size effects arise in the case of van der Waals forces, but now with respect to the solvent

molecules, as described in Chapter 15.

The previous sections have revealed the great complexity of double-layer forces,

almost to the point where it may appear than any interaction is possible. However, as

we shall see, there are many situations where the measured forces appear to be well

described by the simplest continuum equations, such as those in Figure 14.10, right

down to molecular contact.
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14.21 Van der Waals and Double-Layer Forces
Acting Together: the DLVO Theory

The total interaction between any two surfaces must also include the van der Waals

attraction. Now, unlike the double-layer interaction, the van der Waals interaction

potential is largely insensitive to variations in electrolyte concentration and pH, and so

may be considered as fixed in a first approximation. Further, the van der Waals attraction

must always exceed the double-layer repulsion at small enough distances since it is

a power law interaction (i.e., W f �1/Dn), whereas the double-layer interaction energy

remains finite or rises much more slowly as D/ 0. Figure 14.13 shows schematically the

various types of interaction potentials that can occur between two similarly charged

surfaces or colloidal particles in a 1:1 electrolyte solution under the combined action of

these two forces. Depending on the electrolyte concentration and surface charge density

or potential one of the following may occur:

• For highly charged surfaces in dilute electrolyte (i.e., long Debye length), there is

a strong long-range repulsion that peaks at some distance, usually between 1 and

5 nm, at the force or energy barrier, which is often high (many kT).

• In more concentrated electrolyte solutions there is a significant secondary minimum,

usually beyond 3 nm, before the energy barrier closer in. The potential energy

minimum at contact is known as the primary minimum. For a colloidal system, even

though the thermodynamically equilibrium state may be with the particles in contact

in the deep primary minimum, the energy barrier may be too high for the particles to
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overcome during any reasonable time period. When this is the case, the particles

will either sit in the weaker secondary minimum or remain totally dispersed in the

solution. In the latter case the colloid is referred to as being kinetically stable (as

opposed to thermodynamically stable).

• For surfaces of low charge density or potential, the energy barrier will be lower. This

leads to slow aggregation, known as coagulation or flocculation. Below a certain

charge or potential, or above some concentration of electrolyte, known as the critical

coagulation concentration, the energy barrier falls below the W ¼ 0 axis (middle

curve in Figure 14.13) and the particles then coagulate rapidly. The colloid is now

referred to as being unstable.

• As the surface charge or potential approaches zero the interaction curve approaches

the pure van der Waals curve (lower dashed curve in Figure 14.13), and two surfaces

now attract each other strongly at all separations.

The sequence of phenomena described above can be described quantitatively (see

Worked Examples 14.5 and 14.6), and it forms the basis of the celebrated DLVO theory of

colloidal stability, after Derjaguin and Landau (1941), and Verwey and Overbeek (1948).

See also Hiemenz (1997), Hunter (2001), and Evans and Wennerström (1999).

The main factor inducing two (negatively charged) surfaces to come into adhesive

contact in a primary minimum is the lowering of their surface charge or potential, brought

about by decreasing the pH, increased cation binding, or increasing the screening of the

double-layer repulsion by increasing the salt concentration. If the double-layer repulsion

remains high on raising the salt concentration, two surfaces can still “adhere” to each other,

but in the secondary minimum, where the adhesion is much weaker and easily reversible.

On the other hand, as discussed below, in Section 14.16 and in Chapter 15, there are situ-

ations where particles first aggregate then redisperse as the salt concentration or pH is

increased.

It is clear that one must have a fairly good idea of the charging process occurring at

a surface before attempting to understand its double-layer interactions and the stability

of colloidal dispersions, as Worked Examples 14.5 and 14.6 show.

n n n

Worked Example 14.5
Question: For a biocolloidal dispersion of 0.1 mm radius vesicles in a 100 mM NaCl solution at

37�C it has been established that the surface potential j0 changes linearly with increasing pH

from j0 ¼ þ50 mV at pH 5 to j0 = �50 mV at pH 7. Assuming that the vesicle dispersion

remains effectively stable for energy barriers greater than about 25 kT, calculate the range of

pH over which the system is unstable—that is, the vesicles aggregate. Assume a Hamaker

constant for the vesicles in the solution of A ¼ 10�20 J.

Answer: The vesicle-vesicle interaction energy at 37�C is

W ðDÞ ¼ 1
2 RZe

�kD � AR=12D ¼ (0.5 � 10�7) � (9.38 � 10�11) tanh2(j0/107)e
�kD � (10�20 �

10�7)/12D ¼ (4.69 � 10�18) tanh2(j0/107) e
�D(nm)/0.95 � (8.33 � 10�20)/12D(nm). Figure 14.14

shows the DLVO plots at j0¼�24.5 mV (the “critical coagulation potential” where the energy
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is everywhere negative resulting in rapid coagulation) as well as at �14.5 and �34.5 mV—that

is, 10 mV on either side of the critical potential. The energy barrier exceeds 25 kT¼ 1.1� 10�19 J

for potentials higher than about 35 mV (positive or negative), which correspond to pH values

of 35/50 ¼ 0.7 above or below pH 6.0 (the “isoelectric point” or pI where j0 ¼ 0). Thus, the

vesicles will aggregate at pH values between 5.3 and 6.7, although rapid coagulation will occur

at pH values between 5.5 and 6.5. Strictly, the answer also depends on the vesicle concentration

and on the depth of the primary minimum. The secondary minimum at ~4.5 nm is of depth

1.5� 10�20 J or 3.5 kT, which is not deep enough to cause aggregation except for larger vesicles

at higher vesicle concentrations.

n n n

n n n

Worked Example 14.6
Question: For a number of colloidal systems it is found that the “critical coagulation

concentration” (ccc) of the electrolyte varies with the inverse sixth power of the counterion

valency z—that is, rN(ccc) f 1/z6. Is this empirical observation, known as the Schultze-Hardy

rule, (Schultze, 1882, 1883; Hardy, 1900), consistent with the DLVO theory?

Answer: The total DLVO interaction potential between two spherical particles interacting at

constant potential is

W ðDÞ ¼ ð64pkTRrNg2=k2Þe�kD � AR=12D (14.67)
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FIGURE 14.14 Computed DLVO energy profiles between amphoteric vesicles of radii 1,000 Å (0.1 mm) in 100 mM
NaCl solution at 37�C. Note that at the “critical coagulation potential” (middle curve) the energy maximum at
W ¼ 0 occurs at the Debye length (D ¼ k�1 ¼ 0.95 nm in 100 mM NaCl).
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By definition (see Figures 14.13 and 14.14), the critical coagulation concentration or condition

occurs when both W ¼ 0, and dW/dD ¼ 0. The first condition leads to

k2=rN ¼ 768pkTDg2e�kD=A;

while the second condition leads to kD¼ 1, which shows that the potential maximum occurs at

D ¼ k�1 (the Debye length) as illustrated in Figure 14.14. Inserting this into the above equation

leads to

k3=rN ¼ 768pkTg2e�1=A;

that is,

k6=r2NfðTg2=AÞ2:
Now, since k2 f rN z2/3T, the above equation implies that

z6rNf33T 5g4=A2; (14.68)
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1 M NaCl, KCl, KNO3) and divalent (10�4 M CaCl2) solutions. The shaded band in the right inset is the
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minimum, and at even smaller separations there is an additional repulsive short-range steric-hydration force
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Chapter 14 • Electrostatic Forces between Surfaces in Liquids 329



which is a constant if g is constant, a condition that holds at high surface potentials (j0 > 100

mV) where g ¼ tanh(zej0/4kT) ¼ 1. In this limit, therefore, the critical coagulation concen-

trations do indeed scale as rN f 1/z6. For example, if coagulation occurs at 1 M with a 1:1

electrolyte, it will occur at 1
64M with a 2:2 electrolyte (or divalent counterions), and at 1

729M with

a 3:3 electrolyte (or trivalent counterions). Thus, the Schultze-Hardy rule is consistent with the

DLVO theory.

But wait. Is it not unreasonable to assume high surface potentials in divalent and trivalent

electrolyte solutions? Let us investigate the case of low potentials. Here we have g f zj0/T, so

that Eq. (14.68) now becomes

z2rNf 33Tj4
0=A

2; (14.69)

which is constant if j0 remains constant. Thus for low but constant potentials we obtain

a modified form of the Schultze-Hardy rule: rN f 1/z2.

In real systems the surface potential is neither high nor constant, but usually falls to quite

low values as the valency of the electrolyte counterions increases. For example, if j0 f 1/z,

then for low potentials we now obtain: rN f j4
0/z

2 f 1/z6, which brings us back to the

Schultze-Hardy rule. Clearly, the DLVO theory can be applied inmore ways than one to explain

the Schultze-Hardy rule.

n n n

Probably the most important practical issue in any quantitative interpretation of

experimental results in terms of the DLVO theory is the question of the locations of the

“planes of origin” of the double-layer and van der Waals forces. For the double-layer

interaction D ¼ 0 is defined at the plane where the PB equation commences to be valid—

that is, at the OHP, which is generally at or a few ångstroms farther out from the physical

substrate-liquid interface due to the finite size of the surface coions or adsorbed coun-

terions (14.4, 14.7 and 14.18) or the protruding or mobile surface-attached co-ions

(Figures 15.14, 16.14, and Chapter 21). On the other hand, for the van der Waals forceD¼
0 is defined as the distance between the atomic or ionic centers, which is ~2Å farther in

from the physical solid-liquid interface (cf. Section 13.13). A difference of d in the loca-

tions of D ¼ 0 per surface (2d for both surfaces) pushes the plane of origin of the double-

layer interaction (the OHP) out to D ¼ 2d relative to the van der Waals interaction, which

can totally change the DLVO interaction potential. It is remarkable that for values of d as

small as 0.2–0.3 nm the energy barrier and deep primary minimum can be totally elim-

inated, the force-law becomes repulsive at all separations down to “steric contact” at D ¼
2d, and its profile can be significantly modified out to distances as far as 5 nm (see Figs

15.14 and 15.15). This model was first proposed by Frens and Overbeek (1972) to explain

the common phenomenon of colloidal stability in high salt, the spontaneous swelling of

certain colloids in water, and repeptization—the reversible coagulation of colloidal

particles (according to the DLVO theory coagulation in a primary minimum should never

be reversible). This effect was later demonstrated experimentally by Marra and Israel-

achvili (1985) for charged lipid bilayers, by Vigil et al., (1994) for silica surfaces, and by

Claesson et al., (1984) for adsorbing counterions (see Figure 14.18).
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n n n

Worked Example 14.7
Question: The osmotic limit of Eq. (14.59) assumes that the trapped counterions have zero

size. Applying the same finite-size correction as in the van der Waals equation of state, show

that this introduces an effective Stern Layer of thickness d ¼ 16pa3s=3e per surface, where a is

the ionic radius and s the surface charge density. What is d for (i) unhydrated and (ii) hydrated

sodium counterions when each surface charge occupies an area of 1 nm2?

Answer: The van der Waals excluded volume correction to the pressure is P ¼ kT/(V � b),

where we may write V ¼ AD for surfaces of area A interacting across a gap width D. Thus,

P¼ kT/(AD� b)¼ kT/A(D� b/A), which effectively shifts the force curve for point counterions

F ¼ PA ¼ kT/D outwards by D ¼ b/A. Since b ¼ 4 � total ionic volume in the gap ¼
4ð2sA=eÞ43pa3, the magnitude of this shift is

d ¼ b=2A ¼ 16pa3s=3e per surface;

where s/e is the number of charged sites per unit area. Thus, the free counterions in the diffuse

double-layer increase the range of the short-range double-layer repulsion in the same way as

does a finite Outer Helmholtz Plane or Stern Layer of thickness d, which are normally

associated with the surface co-ions or surface-bound counterions. Further aspects of this

effect are discussed by Marcelja (1997, 2000). For a charge density of 1 nm2 per unit charge

(s/e ¼ 1018 m�2), inserting a ¼ 0.095 nm for the radius of unhydrated sodium ions (Table 4.2)

gives d ¼ 0.014 nm. In contrast, for hydrated ions, where a z 0.36 nm, we obtain d z 0.8 nm,

which is a 50-fold increase that can have a very dramatic effect on the net DLVO interaction

(see Worked Example 15.3).

n n n

14.22 Experimental Measurements of Double-Layer
and DLVO Forces

Figure 14.15 shows the experimental results of direct force measurements between two

mica surfaces in dilute 1:1 and 2:1 electrolyte solutions where the Debye length is large,

thereby allowing accurate comparison with theory to be made at distances much smaller

than the Debye length. The theoretical DLVO force laws (using exact solutions to the non-

linear PB equation, which differ from the approximate equations of Section 14.16 only

below k�1) are shown by the continuous curves. The agreement is remarkably good at all

separations, even down to 2% of k�1, and indicates that the DLVO theory is basically

sound. One may also conclude that the dielectric constant of water must be the same as

the bulk value even at surface separations as small as 2 nm, since otherwise significant

deviations from theory would have occurred (Hamnerius et al., 1978, showed that the

dielectric constant of water remains unchanged even in 1 nm films). The surface

potentials j0 inferred from the magnitude of the double-layer forces agree within 10 mV

with those measured independently on isolated mica surfaces by the method of elec-

trophoresis (Lyons et al., 1981). Further, the surface charge density corresponding to
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these potentials is typically 1e per 60 nm2. Thus, at separations below about 8 nm the

surfaces are actually closer to each other than the mean distance between the surface

charges, and yet the double-layer forces still behave as if the surface charges are smeared

out. The reason for this will become clear in section 14.24.

Figure 14.16 shows the first AFM measurement of double-layer forces between two

silica surfaces, by Ducker et al., (1991). Again the results are in good agreement with

theory except at small separations where no adhesion wasmeasured. Asmentioned in the

previous section, in the case of silica the lack of adhesion in aqueous electrolyte solutions

is believed to be due to the protruding silicic acid groups on the silica surface, which carry

the negative charges and define the OHP (see also Section 15.8 and Vigil et al., 1994).

Other SFA, AFM and Osmotic Pressure measurements of double-layer or DLVO forces

have been carried out in various monovalent, divalent and multivalent electrolyte solu-

tions (Pashley, 1981a,b, 1984; Pashley and Israelachvili, 1984; Horn et al., 1988a), between

surfactant and lipid bilayers (Pashley and Israelachvili, 1981; Marra, 1986b,c; Marra and

Israelachvili, 1985; Claesson and Kurihara, 1989; Pashley et al., 1986; Diederichs et al.,

1985; Dubois et al., 1992; Delville et al., 1992, 1993; Anderson et al., 2010), across soap

films (Derjaguin and Titijevskaia, 1954; Lyklema and Mysels, 1965; Donners et al., 1977),

between silica, sapphire, and metal or metal oxide surfaces (Horn et al., 1988a, 1989;

Smith et al., 1988; Meagher, 1992; Vigil et al., 1994; Larson et al., 1993), as well as in

nonaqueous polar liquids (Christenson and Horn, 1983, 1985). The results on surfactant

and lipid bilayers, and on biological molecules and surfaces, are discussed in more detail

in later sections devoted to amphiphilic and biological systems. Here we shall concen-

trate more on solid, inorganic surfaces.
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FIGURE 14.16 The first accurate measurement of double-layer forces using AFM, between a silica bead of radius
R ~ 1.5 mm and a flat silica surface in aqueous NaCl solutions. Note how the repulsive short-range double-layer and
“hydration” forces increase with increasing ionic strength even though the range of the long-range double-layer
repulsion decreases —an effect also seen in the forces between other surfaces such as mica (Figure 14.15). [Repro-
duced from Ducker and Senden, 1992, with permission.]
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In general, the results have been in good agreement with the DLVO theory

(Figure 14.17), often down to separations well below the Debye length (see Figure 14.15).

When deviations do occur these can usually be attributed to the presence of other,

non-DLVO, forces or to the existence of a Stern-layer or protruding coions. A direct

experimental measurement of Stern-layer stabilization is shown in Figure 14.18 where the

counterions used in that study where unusually large. This shows that a short-range

stabilizing repulsion, even in high salt, does not necessarily imply the existence of an

additional non-DLVO force (such as a solvation or hydration force, discussed in

Chapter 15). But it does require an explanation for what determines the finite value for d.
As already noted, for certain geometries the double-layer repulsion at constant

potential decreases at long-range but increases at short range with increasing ionic

strength. This effect may explain the coagulation of colloidal particles and the collapse

of certain charged polymers with increasing salt, followed by their redispersal and

reexpansion on further increasing the concentration (Kallay et al., 1986; Drifford et al.,

1996).

It is perhaps surprising that measured double-layer forces are so well described by

a theory that, unlike van der Waals force theory, contains a number of fairly drastic

assumptions, viz. the assumed smearing out of discrete surface charges, that ions can be

considered as point charges, the ignoring of image forces, and that the PB equation

remains valid even at small distances and high concentrations. One reason for this is that

many of these effects act in opposite directions and tend to cancel each other out. As

mentioned above, most experimental deviations in the forces from those expected from

the DLVO theory are not due to any breakdown in the DLVO theory, but rather to the

existence of a Stern-layer or to the presence of other forces such a ion-correlation,
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FIGURE 14.17 Classic DLVO forces measured between two sapphire surfaces in 10�3 M NaCl solutions at different
pH. The continuous lines are the theoretical DLVO forces for the potentials shown and a Hamaker constant of
A¼ 6.7 � 10�20 J. [Data from SFA experiments with surfaces in the crossed-cylinder geometry, equivalent to a sphere
of radius R near a flat surface or two spheres of radius 2R, adapted from Horn et al., 1988a.]
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solvation, hydrophobic, or steric forces. These additional forces, are, of course, very

important, especially in more complex colloidal and biological systems where they often

dominate the interactions at short-range where most of the interesting things happen.

Their consideration forms a large part of the rest of this book.

14.23 Electrokinetic Forces
When an electric field is applied across an electrolyte solution, any charged particles

suspended in the solution will move toward the oppositely charged electrode—for

example, a negatively charged colloidal particle will move toward the anode. This is

known as electrophoretic flow and the force acting on the particle is known as the

electrophoretic force. With regard to the electrolyte ions themselves, these will also move,

the anions toward the anode and the cations toward the cathode. If the surfaces of the

flow chamber are charged—for example, if the field is applied along a silica capillary tube

whose surface is negatively charged—then the excess positively charged counterions in

the solution will move toward the cathode. Since these counterions will be located within
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FIGURE 14.18 Example of Stern-layer effects due to the finite size of the counterions. Measured forces between
two mica surfaces in various tetra-alkyl ammonium bromide solutions (Claesson et al., 1984). The continuous curves
are the expected DLVO interactions assuming potentials as shown and Stern-layer thicknesses of d per surface
equal to the diameters (Born repulsion) of the adsorbed cations: d¼ 0.6 nm formethyl ammonium (Me4N

þ), d¼ 0.9 nm
for propyl ammonium (Pr4N

þ), and d ¼ 1.2 nm for pentyl ammonium (Pe4N
þ). Note how the outward shift in the OHP

has eliminated the force maximum and primary minimum. [Data from SFA experiments with surfaces in the
crossed-cylinder geometry, equivalent to a sphere of radius R near a flat surface or two spheres of radius 2R.]
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the double-layer very close to the surface, the whole liquid column enveloped by these

ions (including any particles within the column) will be dragged along with them. This is

known as electro-osmotic flow.

The forces, flows and flow patterns generated by electrophoretic and electro-osmotic

forces can be extremely complex, and depend on the geometry and size of the flow

chamber and the suspended particles. For example, the negatively charged particle

moving toward the anode by electrophoresis will also experience an opposing electro-

osmotic force arising from the viscous drag of the suspending liquid moving in the

opposite direction. If the diameter of the capillary tube is large compared to the diameter

of the particle, the electrophoretic force wins out, but if it is small, the electro-osmotic

force wins out and the particle will move with the liquid (Sen Gupta and Papadopoulos,

1997; Papadopoulos, 1999).

14.24 Discrete Surface Charges and Dipoles
The charge on a solid surface is obviously not uniformly spread out over the surface, as

has been implicit in all the equations derived so far. For a surface with a typical potential

of 75 mV in a 1 mM NaCl solution, the surface charge density as given by the Grahame

equation is s ¼ 0.0075 C m�2, which corresponds to only one charge per 21 nm2 or

2100 Å2. In 0.1 M NaCl the same potential implies 1e per 2 nm2. Thus, the charges on real

surfaces are typically 1–5 nm apart from each other on average. What effect does this have

on the electrostatic interaction between two surfaces, especially at surface separations

closer than the separation between the charges?

Let us consider a planar square lattice of like charges q as shown in Figure 14.19a. If d is

the distance between any two neighboring charges, then the mean surface charge density

is s ¼ q/d2, and if this charge were smeared out, the electric field emanating from the

surface would be uniform and given by Ez ¼ s/2330. What, then, is the field of a surface

lattice of discrete charges having the same mean charge density? To compute this field

one must sum the contributions from all the charges. The resulting slowly converging

series can be turned into a rapidly converging series by using a mathematical technique

known as the Poisson summation formula (Lighthill, 1970). If x and y are the coordinates

in the plane relative to any charge as the origin (Figure 14.19a), the field Ez along the z

direction is given by the series (Lennard-Jones and Dent, 1928)

Ez ¼ s

2303

�

1þ 2

�

cos
2px

d
þ cos

2py

d

�

e�2pz=d þ/

�

; (14.70)

where the higher-order terms decay much more rapidly with distance z. The first term

is the same as that of a smeared-out surface charge. The second term is interesting,

for it shows that the excess field decays away extremely rapidly, with a decay length of

d/2p, for example, about 0.3 nm for charges 2 nm apart. Thus, at z ¼ 1
2d the electric

field is at most 17% different from that of the smeared-out field, while at z ¼ d it has

reached 99.3% of the smeared-out value! A similar conclusion is reached for other types
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of lattices; for example, for a hexagonal lattice where neighboring ions are separated by

a distance d, the mean surface charge density is s ¼ 2q/
ffiffiffi

3
p

d2 and the exponential decay

length of the field is
ffiffiffi

3
p

d/4p, which is even smaller than for a square lattice—that is,

the field decays even faster. It is for these reasons that the smeared-out approximation

works so well in considering the electrostatic interactions at and between charged

surfaces (McLaughlin, 1989).

The above analysis can be readily extended to surfaces that have no net charge but that

carry discrete surface dipoles. A common example of this is the dipolar or zwitterionic

headgroups of lipid molecules that reside at the lipid-water interfaces of micelles, surface

monolayers, and bilayers. The dipoles may align normally or parallel to the surfaces, and

they can be either immobilized in a 2-D lattice or have (usually restricted) lateral and/or

rotational mobility. The charged lattice of Figure 14.19a can be transformed into a lattice
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FIGURE 14.19 (a)–(c): Sections of infinite lattices of charges and dipoles. (d) and (e): Electric field lines and directions
above electro-neutral surfaces consisting of discrete charges (d) and aligned dipoles (e). Equations (14.71) and
(14.72) show that within a very short distance away from each surface (z T d) the average or mean field of
a dipolar lattice is already effectively zero.
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of in-plane dipoles by adding charges of opposite sign at the center of each square

(Figure 14.19b). By superimposing the fields of the positive and negative lattices using

Eq. (14.70) it is easy to show that the electric field opposite a positive charge (at x ¼ 0,

y ¼ 0) is

Ez ¼ þð4q=303d2Þe�2pz=d þ/; (14.71)

while opposite a negative charge (at x ¼ 1
2d, y ¼ 1

2d), it is

Ez ¼ �ð4q=303d2Þe�2pz=d þ/: (14.72)

This geometry is equivalent to a dipolar or zwitterionic lattice whose dipoles, of length

d/
ffiffiffi

2
p

and surface density 1/d2, are lying parallel to the surface.

For dipoles of length l comparable to d arrayed perpendicular to the surface, as in

Figure 14.19c, the above two equations become replaced by Ez z�(2q/303d
2)e�2pz/d þ/.

This procedure can be readily extended to other lattices including three-dimensional

ionic crystals. The end result is always that the field is positive or negative depending on

the x, y coordinates and that it decays very rapidly to zero with increasing z.

If a second lattice of vertical dipoles is brought up to the first, the Coulombic inter-

action pressure between the two dipolar surfaces at a separation D will be given by

PðDÞ ¼ �ð2q2=303d4Þe�2pD=d (14.73)

depending on whether the approaching dipoles are exactly opposite each other or in

register (þ sign, repulsion) or out of register (� sign, attraction). The pressure is anyway

very small and in reality, since surface dipoleswill not be on aperfect lattice but distributed

randomly or moving about (e.g., zwitterionic head-groups on a lipid bilayer surface),

the net pressure will average to zero in a first approximation, though a Boltzmann-

averaged interaction will yield a weak but overall exponentially attractive force. A

similar result is obtained if the dipoles are lying in the plane of the surfaces, as in

Figure 14.19b.

The above results furnish yet another example of where the purely electrostatic

interaction between a system of charges or dipoles that are overall electrically neutral

produces an attractive force even though intuitively one might have expected two

surfaces with vertical dipoles pointing towards each other to always repel each other. In

the limit where the surface-bound dipoles are free to rotate in all directions the resulting

interaction energy must be the same as the attractive van der Waals-Keesom interaction,

which decays as �1/D4 [Eq. (13.49)] but is screened if the interaction occurs across

electrolyte solution (Section 13.11). Jönsson and Wennerström (1983) also considered the

image force between individual dipoles and their image reflected by the other surface,

and found that for surfaces of low dielectric constant interacting across water this

contribution can be large and repulsive.

The interactions of finite-sized dipolar domains on surfaces, as occur in monolayers,

lipid bilayers and biological membranes, are discussed in Chapters 20 and 21 (see also

Problem 14.1).
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PROBLEMS AND DISCUSSION TOPICS
14.1 Sketch the electric field lines of (i) a single dipole, (ii) an infinite lattice of vertical

dipoles, and (iii) an infinite lattice of in-plane dipoles. Indicate the directions of the

dipoles and fields with arrows. (iv) Without resorting to complex mathematical

calculations show whether the normal Coulomb (dipole-dipole) force F(z) between

two similar parallel surfaces of type (ii) and (iii) is attractive or repulsive. Assume that

the surfaces (not the fixed dipoles on each surface) can move freely in the x-y plane.

(v) Sketch the electric field lines of a finite lattice of dipoles of type (ii) and (iii).

14.2 A glass surface is exposed to water vapor at 96% relative humidity (i.e., p/psat ¼
0.96). Estimate the equilibrium thickness D of the thin film of water adsorbed on

the surface assuming (i) that only electrostatic double-layer forces are operating

and that the surface is fully dissociated with a surface charge density of s ¼
�0.1 C/m2, (ii) that the monovalent counterions (z ¼ 1) are uniformly distributed

throughout the thin water film. [Answer: 0.46 nm.] With these same assumptions

also estimate the repulsive electrostatic pressure between two such planar

surfaces immersed in water at a distance 2D apart. [Answer: 5.6� 106 Pa or 55 atm.]

Is your estimate likely to be too high or too low, and how does it compare with

the attractive van der Waals pressure between the surfaces at this separation? Will

the van der Waals attraction eventually win out at some smaller, but physically

realistic, plate separation? [Answer: ~0.4 nm.]

14.3 Calculate the repulsive pressure between two charged surfaces in pure water where

the only ions in the gap are the counterions that have come off from the dissociating

surface groups (i.e., no electrolyte present, no bulk reservoir). Assume a surface

charge density of one electronic charge per 0.70 nm2 and T¼ 22�C. Plot your results
as pressure against surface separation in the range 0.5–18 nm and compare these

with the experimental results of Cowley et al., [Biochemistry, Vol. 17, 3163 (1978)]

where in Figure 4b on page 3166 the authors plot their measured values for such

a system (6 points). What conclusions do you arrive at concerning the “hydration”

forces between two pure phosphatidyl-glycerol (PG) bilayers at small separations?

14.4 Explain, in qualitative terms, why the double-layer interaction between two

surfaces having unequal but constant charge densities is always repulsive at

small separations, irrespective of the signs of s1 and s2, and without resorting

to complicated equations or mathematics show that it is given by

PðD/0Þ ¼ þjðs1 þ s2Þ kT=zeDj; as given by Eq. (14.63) in this limit.

14.5 Split the double-layer interaction free energy into its enthalpic and entropic

components and discuss the implications of your result.

14.6 The reason(s) why positively charged divalent counterions such as Ca2þ are better

coagulants or flocculants of negatively charged surfaces or particles than mono-

valent ions such as Naþ is because of one or more of the following:

(i) They screen the electrostatic repulsion better.

(ii) They are more hydrated.
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