14 HEDN
Electrostatic Forces between
Surfaces in Liquids

14.1 The Charging of Surfaces in Liquids: the Electric
“Double-Layer”

Situations in which van der Waals forces alone determine the total interaction are
restricted to a few simple systems—for example, to interactions in vacuum or to
nonpolar wetting films on surfaces, both of which were discussed in Chapter 13. In
more complex, and more interesting, systems long-range electrostatic forces are also
involved, and the interplay between these two interactions has many important
consequences.

As mentioned earlier the van der Waals force between similar particles in a medium
is always attractive, so that if only van der Waals forces were operating, we might expect
all dissolved particles to stick together (coagulate) immediately and precipitate out of
solution as a mass of solid material. Our own bodies would be subject to the same fate if
we remember that we are composed of 55-75% water. Fortunately this does not happen,
because particles suspended in water or any liquid of high dielectric constant are
usually charged and can be prevented from coalescing by repulsive electrostatic forces.
Other repulsive forces that can prevent coalescence are solvation and steric forces,
described in Chapters 15 and 16. In this chapter we shall concentrate on the electro-
static forces.

The charging of a surface in a liquid can come about in three ways:

1. By the ionization or dissociation of surface groups (e.g., the dissociation of protons
from surface carboxylic groups (—~COOH — —COO™~ + H™), which leaves behind
a negatively charged surface)

2. By the adsorption or binding of ions from solution onto a previously uncharged
surface—for example, the adsorption of —OH™ groups to the water-air or water-
hydrocarbon interfaces that charges them negatively, or the binding of Ca®*" onto the
zwitterionic headgroups of lipid bilayer surfaces that charges them positively. The
adsorption of ions from solution can, of course, also occur onto oppositely charged
surface sites—for example, the adsorption of cationic Ca*" to anionic —COO ™ sites
vacated by H" or Na™. Such surfaces are known as ion exchangeable surfaces. Ion
exchange can take a surprisingly long time.

3. The above examples apply to isolated surfaces exposed to a liquid medium (usually
water). A different type of charge exchange mechanism occurs between two dissimilar
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surfaces very close together where, as previously mentioned in Section 3.5, charges—
usually protons or electrons—hop across from one surface to the other. This gives rise
to an electrostatic attraction between the now oppositely charged surfaces. Such
“acid-base” type interactions are important for understanding short-range adhesion
forces and are discussed in Chapter 17.

Whatever the charging mechanism (also referred to as charge regulation), the final
surface charge of co-ions is balanced by an equal but oppositely charged region of coun-
terions. Some of the counterions are bound, usually transiently, to the surface within the so-
called Stern or Helmholtz layer, while others form an atmosphere of ions in rapid thermal
motion close to the surface, known as the diffuse electric double-layer' (Figure 14.1). The
difference between a “bound” ion and a “free” ion in the diffuse double-layer is analogous
to the difference between a water molecule in the sea and in the atmosphere. However,
because the distances involved in the latter case are of atomic dimensions, the distinction
can sometimes become blurred.

Two similarly charged surfaces usually repel each other electrostatically in solution,
though under certain conditions they may attract at small separations. Zwitterionic
surfaces—that is, those characterized by surface dipoles but no net charge also interact
electrostatically with each other, though here we shall find that the force is usually
attractive.
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FIGURE 14.1 lons bound to a surface are not rigidly bound but can exchange with other ions in solution; their lifetime
on a surface can be as short as 10~° s (1 ns) or as long as many hours.

!Originally, the layers of co-ions and counterions were thought to behave like a capacitor whose two rig-
id plates carry equal but opposite charges (see Section 3.3). Hence the term “double-layer” [of charge]. Indeed,
capacitors are excellent models for double-layers as far as their electrical properties are concerned.
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14.2 Charged Surfaces in Water: No Added
Electrolyte—"Counterions Only”

In the following sections we shall consider the counterion distribution and force
between two similarly charged planar surfaces in a pure liquid such as water, where
(apart from the H30" and OH™ ions from dissociated water) the only ions in the
solution are those that have come off the surfaces. Such systems are sometimes
referred to as “counterions only” systems, and they occur when, for example, colloidal
particles, clay sheets, surfactant micelles or bilayers whose surfaces contain ionizable
groups interact in pure water, and also when thick films of water build up (condense)
on an ionizable surface such as glass. But first we must consider some fundamental
equations that describe the counterion distribution between two charged surfaces in
solution.

14.3 The Poisson-Boltzmann (PB) Equation

For the case when only counterions are present in solution, the chemical potential of any
ion may be written as (cf. Sections 2.3 and 2.4):

u = zey + kT logp, (14.1)

where ¥ is the electrostatic potential (E = —dy/dx is the electric field), and p the number
density of ions of valency z at any point x between two surfaces (Figure 14.2). Since only
differences in potential are ever physically meaningful, we may set y, = 0 at the midplane
(x = 0), where also p = pg and (dy/dx)¢ = 0 by symmetry.

From the equilibrium requirement that the chemical potential be the same
throughout (i.e., for all values of x), Eq. (14.1) gives us the expected Boltzmann distri-
bution of counterions at any point x (the Nernst equation):

p = poe VKT (14.2)

One further important fundamental equation is required. This is the well-known Poisson
equation for the net excess charge density at x:

zep = —ege(d®y/dx?) (14.3)

which when combined with the Boltzmann distribution, Eq. (14.2), gives the Poisson-
Boltzmann (PB) equation:

d?y/dx® = —zep/ege = —(zepy/eoe)e Y/ kT . (14.4)

When solved, the PB equation gives the potential V¥, electric field E = —dy/dx, and
counterion density p, at any point x in the gap between the two surfaces. Let us first
determine these values at the surfaces themselves. These quantities are often referred to
as the contact values: s, Es, ps, and so on.
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FIGURE 14.2 Two negatively charged surfaces of surface charge density ¢ separated a distance D in water. The only
ions in the space between them are the counterions that have dissociated from the surfaces. The counterion
density profile px and electrostatic potential Y are shown schematically in the lower part of the figure. The “contact”
values are ps, ¥s and Es = —(dy/dx)s.

14.4 Surface Charge, Electric Field, and Counterion
Concentration at a Surface: “Contact” Values

The PB equation is a nonlinear second-order differential equation, and to solve for  we
need two boundary conditions, which determine the two integration constants. The first
boundary condition follows from the symmetry requirement that the field must vanish at
the midplane—that is, that Ey = —(dy//dx)q = 0. The second boundary condition follows
from the requirement of overall electroneutrality—that is, that the total charge of the
counterions in the gap must be equal (and opposite) to the charge on the surfaces. If 7 is
the surface charge density on each surface (in C m~2) and D is the distance between the
surfaces (see Figure 14.2), then the condition of electroneutrality implies that

D/2 -D/2
o= —/ zepdx = +€08/ (dzx,lx/dxz)zdx = —808(d1///dx)D/2 = —goe(dy/dx)g = —epeEs,
Jo Jo

that is,
Es = —a/epe, (14.5)
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which is essentially Gauss’ Law (cf. Section 3.4). Equation (14.5) gives an important
general boundary condition relating the surface charge density ¢ to the electric field
Eg at each surface (at x = +D/2), which we may note is independent of the gap
width D.

Worked Example 14.1

Question: Is the electric field near a charged surface in water sufficiently intense to immobilize
the water molecules adjacent to it?

Answer: Assuming a high-charge density of e = —0.3 Cm ™2 (which is one charge per 0.5 nm*—
typical of a fully ionized surface), the electric field at the surface, Eq. (14.5), is Es = —0/¢pe =
— 0.3/80(8.85 x 107'%) = —4.2 x 10® V m~'. We may compare this to the field just outside
a monovalent ion in water. Using Eq. (3.1), the field at 7 = 0.25 nm from the center of an ion is
E, = e/4meger” = 2.9 x 108 Vm™'. Since this is comparable to the field at the charged surface,
and since the fields of monovalent ions are usually not strong enough to immobilize water
molecules around them (cf. Chapters 3-5), it is unlikely that water molecules will become
significantly oriented, immobilized or “bound” to any but the most highly charged surfaces.
However, other interactions with the surface, such as H-bonding, may lead to significant
effects on the local water structure.

Turning now to the ionic concentrations, there exists an important general relation
between the concentrations of counterions at either surface and at the midplane.
Differentiating Eq. (14.2) and then using Eq. (14.4) we obtain

dr _ _ %EP0 ,—zey/kT dy _ eoe(dy @ _ coe d /dy ’ (14.6)
dx kT dx) ~ kT\dx/\dx2) = 2kT dx\dx/) ’ )
hence
[ ke [T [/dy 2_ eoe [(dy\?
Px=Po = /0 dpo = %/0 d(a) = +ﬁ<&>x
so that
0 (A9
Px = ”°+2kT<dx>x’ (14.7)

which gives p at any point x in terms of pg at the midplane and (dy/dx)* at x. In particular
at the surface, x = D/2, we obtain using Eq. (14.5) the contact value of p

ps = po + 02 /2e0ekT. (14.8)

This important result shows that the concentration of counterions at the surface depends
only on the surface charge density ¢ and the counterion concentration at the midplane. It
shows that ps never falls below ¢%/2¢yekT even for isolated surfaces—that is, for two
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surfaces far apart when py — 0. For example, for an isolated surface in water of charge
density ¢ = —0.2 C m 2 (one charge per 0.8 nm?) at 293 K

ps = 02 /2e0ekT = (0.2)2/(2 x 80 x 8.85 x 10712 x 4.04 x 10721) = 7.0 x 10*’ m 3,

which is about 12 M. If these surface counterions are considered to occupy a layer of
thickness ~0.2 nm, the above value for ps corresponds to a surface counterion density of
(7 x 10%7)(0.2 x 107?) = 1.4 x 10'® ions/m? or one charge per 0.7 nm?, which is about the
same as the surface charge density ¢. This is an interesting result, for it shows that
regardless of the counterion distribution profile p, away from a surface (Section 14.5), most
of the counterions that effectively balance the surface charge are located in the first few
angstroms from the surface (Jonsson et al., 1980)—that is, right up against the surface,
hence the term double-layer. However, for lower surface charge densities, since pg o« a2, the
layer of counterions extends well beyond the surface and becomes much more diffuse,
hence the term diffuse double-layer.

14.5 Counterion Concentration Profile Away from
a Surface

The above equations are quite general and are the starting point of all theoretical
computations of the ionic distributions near planar charged surfaces, even when the
solution contains added electrolyte (Section 14.10 onwards). To proceed further for the
specific case of counterions only (see Figure 14.2) we must now solve the Poisson-
Boltzmann equation, Eq. (14.4), which can be satisfied by”

v = (kT /ze) log(cos® Kx) (14.9)
or
e /KT — 1/cos® Kx, (14.10)
where K is a constant given by
K? = (ze)?py/2¢e0ekT. (14.11)

With this form for the potential we see that y = 0 and dy/dx = 0 at x = 0 for all K, as
required. To solve for Kwe differentiate Eq. (14.9) and then use Eq. (14.5) to obtain for the
electric fields

at any pointx : Ex = —dy/dx = +(2kTK/ze)tan Kx, (14.12a)

at the surfaces : Es = —(dy/dx), = +(2kTK/ze)tan(KD/2) = —o/¢pe. (14.12b)

There are other mathematical solutions to this equation, but Eq. (14.9) is the only one that is physically
realistic—that is, satisfying all the boundary conditions, as demonstrated further in the following.
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The counterion distribution profile

py = poe VKT — po/cos? Kx (14.13)

is therefore known once K is determined from Eq. (14.12) in terms of ¢ and D.

Worked Example 14.2

Question: Two charged surfaces with ¢ = 0.2 C m~2 are 2 nm apart (D = 2 nm). Calculate the
field, potential and counterion density at each surface, at 0.2 nm from each surface and at the
midplane, assuming monovalent counterions.

Answer: From Eq. (14.12) we find that for z = —1, K = 1.3361 x 10° m~! at 293 K. From
Eq. (14.11) this means that py = 0.40 x 10>’ m~3, so that at the surface ps = py/cos*(KD/2) = 7.4 x
10 m~3. The same result is also immediately obtainable from Eq. (14.8), since, as we have
previously established, 62/2egekT = 7.0 x 10" m~>. Thus, the counterion concentration at each
surface pg is about 18.5 times greater than at the midplane py, which is only 1 nm away. Putting
K=1.3661 x 10°m™, kT=4.045x 1072 ],6 =02Cm 2, ¢=80,ze=1.602 x 107'°C,and D =
2 x 107 m into Egs. (14.9), (14.12), and (14.13), we obtain:

Yymv) EVmH pm?

At x = 1 nm (“contact value” at surface) 74 2.8 x 108 7.4 x 10*7 (12 M)
At x = 0.8 nm (0.2 nm from surface) 37 1.2 x 108 1.7 x 10 3 M)
Atx =0 (“midplane” value 1 nm from surface) 0 0 0.4 x 107 (0.7 M)

Note the unphysically steep decrease in the ion density p near the surface over a distance of
only 0.2 nm (2 A).

Figure 14.3 shows how the counterion concentration varies with distance for the case
of ¢ = 0.224 C m 2, D = 2.1 nm, as calculated on the basis of (1) the Poisson-Boltzmann

1 028

¢<—p=155M p

px (M)

— 0
-1.05 0 +1.05

Distance x (nm)

FIGURE 14.3 Monovalent counterion concentration profile between two charged surfaces (¢ = 0.224 C m~2,

corresponding to one electronic charge per 0.714 nm?) a distance 2.1 nm apart in water. The smooth curve is obtained
from the Poisson-Boltzmann equation; the other is from a Monte Carlo simulation by Jonsson et al., (1980).
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equation as in the above example, and (2) a Monte Carlo simulation of the same system.
The agreement is quite good though the Monte Carlo result gives a slightly higher
counterion concentration very near the surfaces compensated by a lower concentration
in the central region between the two surfaces.

14.6 Origin of the lonic Distribution, Electric Field,
Surface Potential, and Pressure

Before we proceed to calculate the force or pressure between two surfaces, it is instructive
to discuss, in qualitative terms, how the counterion distribution, potential, field, and
pressure between two surfaces arise. The first thing to notice is that if there were no
ions between two similarly charged surfaces, there would be no electric field in the gap
between them. This is because the field emanating from a planar charged surface,
E = —0/2¢p¢, is uniform away from the surface (Section 3.3). The two opposing fields
emanating from the two plane parallel surfaces therefore cancel out to zero between the two
surfaces or plates (although they add up outside the two plates). Thus, when the counterions
are introduced into the intervening region they do not experience an attractive electrostatic
force toward each surface. The reason why the counterions build up at each surface is
simply because of their mutual repulsion and is similar to the accumulation of mobile
charges on the surface of any charged conducting material such as a metal. The repulsive
electrostatic interaction between the counterions and their entropy of mixing alone
determine their concentration profile py, the potential profile Y, and the field E, between the
surfaces (Jonsson et al., 1980), and we may further note that in all the theoretical derivations
so far the only way the surface charge density ¢ enters into the picture is through Eq. (14.5),
which is simply a statement about the total number of counterions in the gap.

Further, if the centers of the surface coions were not at the physical solid-liquid
interface (at x = j:% D) but at some small distance ¢ within the surface (Figure 14.4), the
ionic distribution py, potential y, field E, and the pressure in the medium between +4 D
and —4 D would not change. But the potential would be different if it were measured at
X = i(% D — 0). This is the origin of the so-called Stern and Helmholtz layers (Stern, 1924;
Verwey and Overbeek, 1948; Hiemenz, 1997) that separate the charged plane from the
Outer Helmholtz Plane (OHP) from which the ionic atmosphere begins to obey the
Poisson-Boltzmann equation. The combined thickness of the Stern and Helmholtz
layers ¢ is of the order of a few angstroms and reflects the finite size of the charged
surface groups (coions) and transiently bound counterions, as illustrated in Figures 14.1
and 14.4. Clearly, within this region, whose thickness is determined by the finite (hard
core) sizes of the ions, the PB equation cannot hold. If the dielectric constant of the
Stern-Helmholtz layer is assumed to be uniform and equal to ¢; it can be modeled as
a capacitor (see Section 3.3) whence the additional drop in potential across this layer is
given by

\//5 = 05/8085. (14.14)
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FIGURE 14.4 Stern layers of thickness ¢ at each surface dividing the planes of fixed charge density ¢ from the
boundary of the aqueous solution—the OHP. There is an additional linear drop in potential across the Stern layer
given by Eq. (14.14) so that the total potential drop is Yror = ¥ + ¥s. However, the counterion density and electrostatic
potential within the aqueous region between the two OHPs at x = D/2 and x = —D/2, and the pressure between the
two surfaces, are independent of .

For example, if 6 = 0.2 nm, ¢ = 0.2 C m 2, and ¢5 = 40, we obtain ¥s = 130 mV, which is

actually higher than the potential drop across the diffuse double-layer, calculated in the
previous worked example.

We now turn to the origin of the force or pressure between the two surfaces. Contrary
to intuition, the origin of the repulsive force between two similarly charged surfaces in
a solvent containing counterions and/or added electrolyte ions is entropic (osmotic), not
electrostatic. Indeed, the electrostatic contribution to the net force is actually attractive.
Consider an isolated surface, initially uncharged, placed in water. When the surface
groups dissociate the counterions leave the surface against the attractive Coulombic force
pulling them back. What maintains the diffuse double-layer is the repulsive osmotic
pressure between the counterions which forces them away from the surface and from
each other so as to increase their configurational entropy. On bringing two such surfaces
together one is therefore forcing the counterions back onto the surfaces against their
preferred equilibrium state—that is, against their osmotic repulsion but favored by the
electrostatic interaction. The former dominates and the net force is repulsive.

On the other hand, to understand why the purely electrostatic part of the interaction is
attractive recall that it involves an equal number of positive (counterion) and negative
(surface) charges—that is, the system is overall electrically neutral. The net Coulombic
interaction between a system of charges that are overall neutral always favors their
association, as we saw in the case of ionic crystals in Chapter 3 and dipoles in Chapter 4.

There are situations where the electrostatic attraction does dominate over the entropic
repulsion, giving rise to an overall attraction even between two equally charged surfaces
or particles in solution. These cases are discussed in later Sections.
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14.7 The Pressure between Two Charged Surfaces
in Water: the Contact Value Theorem

We may derive an expression for the pressure of counterions in a confined space in the
same way as the pressure of a van der Waals gas in a confined volume was derived in Section
2.5. Using Eq. (2.20), the repulsive pressure P of the counterions at any position x from the
center (see Figure 14.4) is given by (0P/dx'), 7= p(du/dx) 1, where the chemical potential p
is given by Eq. (14.1). The change in pressure at x on bringing two plates together from

infinity (x' = o, where P = 0) to a separation x' = D at constant temperature is therefore
D
Py(D) — Px() = Py(D) = + / [zep(dy/dx')dx’ + KT (dp/dx’)dx’]

7

X' =0
. / [zep(dy/dx’) dx’ + KTdp,]. (14.15)
x'=D

Note that in Eq. (14.15), the values are computed at a fixed point x within the ionic
solution, which is not the same as the variable separation x’ between the two surfaces.
Replacing zep by the Poisson equation, Eq. (14.3), and using the relation

d v\t (dv (dy
dx\dx/ — “\dx/\dx?
Eq. (14.15) becomes

1 (dy\? 1 (dy\?
Px(D) — Px(oo) = [— 5808(%) o + kTpx(D):| — l:— EEge(d—i) () + ]CT,())C(W):|7 (14.16)
X x( o0

where the subscripts x mean that the values are calculated at x when the surfaces are at
a distance D or « apart. In the present case, since there are no electrolyte ions in the bulk
solution, py() = 0, so that by Eq. 14.7, we have Py(«~) = 0, as expected.

The above important equation gives the pressure P at any point x between the two
surfaces, and we may notice that it is split into two contributions. The first, being
a square, is always negative—that is, attractive (except at the midplane, x = 0, where it is
zero). This is the electrostatic field energy contribution, discussed qualitatively in the
previous section. The second term is positive and hence repulsive. This is the entropic
(osmotic) contribution to the force.

At equilibrium, P, (D) should be uniform throughout the gap—that is, independent of
x—and it is also the pressure acting on the two surfaces. To verify this we note that using
Eq. (14.7) the above may be written as

Px(D) = kT[pg(D) — po( )] (14.17a)

or

Py(D) = kTpy(D) since here py(©) = 0. (14.17b)
which is indeed independent of x and depends only on the increased ionic concentration,
or osmotic pressure, at the midplane, py(D), and thus on ¢ and D. We may therefore drop
the subscript x from Py (D). It is instructive to insert Eq. (14.8) into the above equation,
from which we obtain
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P(D) = kTpo(D) = kT[ps(D) — o° /2eekT],
that is,
P(D) = kT[ps(D) — ps()]- (14.18)

Thus, the pressure is also given by the increase in the counterion concentration at the
surfaces as they approach each other. This important equation, known as the contact
value theorem, is always valid as long as there is no interaction between the counterions
and the surfaces—that is, as long as there is no counterion adsorption so that the surface
coion charge density remains constant and independent of D. It shows that the force or
pressure is repulsive if the density of counterions at the surface increases as the two
surfaces are brought together and attractive if it decreases.

The contact value theorem is very general and applies to many other types of inter-
actions—for example, to double-layer interactions when electrolyte ions are present in
the solution, to solvation interactions where ps(D) is now the surface concentration of
solvent molecules (Chapter 15), to polymer-associated steric and depletion interactions
where pg(D) is the surface concentration of polymeric groups (Chapter 16), and to various
entropic or thermal fluctuation forces between fluid surfaces and biological membranes
(Chapters 16 and 21). In the case of overlapping double-layers, the resulting force is often
referred to as the electric or electrostatic double-layer force, even though, as we have seen,
the repulsion is really due to entropic confinement.

Returning to Eq. (14.17b), the pressure may also be expressed in terms of K, as given by
Eq. (14.11), by

P = kTpy = 2¢eqe(kT/ze)*K>. (14.19)

As an example let us apply this result to Worked Example 14.2, where for two surfaces
with ¢ = 0.2 C m 2 at D = 2 nm apart, we found K = 1.336 x 10° m~'. The repulsive
pressure between them is therefore 1.7 x 10° N m™2, or about 17 atm. Note that this
repulsion exceeds by far any possible van der Waals attraction at this separation. For
a typical Hamaker constant of A = 102° J the van der Waals attractive pressure would be
only A/12rD* = 3 x 10* N m 2 or about 0.3 atm.

The above equations have been used successfully to account for the equilibrium
spacings of ionic surfactant and lipid bilayers in water (Cowley et al., 1978). Figure 14.5
shows experimental results obtained for the repulsive pressure between bilayers
composed of a mixture of charged and uncharged lipids in water using the Osmotic
Pressure Technique (cf. Figures 12.1h and 12.2), together with the theoretical curve based
on Eq. (14.19). The agreement is very good down to D = 2 nm and shows that the effective
charge density of the anionic lipid headgroups is about le per 14 nm? At smaller
distances the measured forces are more repulsive than expected due to the steric-
hydration interactions between the thermally mobile hydrophilic headgroups that
characterize these fluid-like interfaces (cf. Problem 14.3 and Chapters 15, 16, and 21).
Similar methods have been used to measure the repulsive electrostatic forces between
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FIGURE 14.5 Measured repulsive pressure between charged bilayer surfaces in water. The bilayers were composed of
90% lecithin (phosphatidylcholine, PC), a neutral zwitterionic lipid, and 10% phosphatidylglycerol (PG), a negatively
charged lipid. For full ionization, the surface charge density should be one electronic charge per 7 nm?, whereas the
theoretical line through the experimental points suggests one charge per 14 nm? (i.e., about 50% ionization). Below
2 nm there is an additional repulsion due to “steric-hydration” forces. [Adapted from Cowley et al., (1978), ©1978
American Chemical Society.]

surfactant bilayers and biological membranes, both in pure water and in salt solutions
(Diederichs et al., 1985; Dubois et al., 1992).

Repulsive electrostatic forces also control the long-range swelling of clays in water.
Most naturally occurring clays are composed of lamellar aluminosilicate sheets about 1 to
2 nm thick whose surfaces dissociate in water giving off Na*, K*, and Ca®" ions, and when
placed in water they can swell to more than 10 times their original volume (Norrish, 1954).
The swelling of clays is, however, a complex matter and also involves other forces at
surface separations below about 3 nm (van Olphen, 1977; Pashley and Quirk, 1984;
Kjellander et al., 1988a, b; Quirk, 1994).

In the case of charged spherical particles (e.g., latex particles3) in water, the long-range
electrostatic repulsion between them can result in an ordered lattice of particles even
when the distance between them is well in excess of their diameter (Takano and Hachisu,
1978). In such systems (cf. Figure 6.2) colloidal particles attempt to get as far apart from
each other as possible but, being constrained within a finite volume of solution, are

3Latex particles are made from biological or synthetic polymers. Hydrophobic latex particles can be
rendered water-soluble by grafting hydrophilic groups to their surfaces—for example, sulfonic acid groups to
polystyrene particles.
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forced to arrange themselves into an ordered lattice. For a review on colloidal crystals see
Murray and Grier (1996).

Parsegian (1966) and Jonsson and Wennerstrom (1981) extended the above analysis
to the interactions between cylindrical and spherical structures, and the results were
used to analyze the relative stability of charged surfactant aggregates which form
spontaneously in water. Such micellar structures are soft and fluid-like, and they change
from being spherical to cylindrical to sheet-like (bilayers) as the amount of water is
reduced (see Chapter 20).

Worked Example 14.3

Question: Two flat but dissimilar surfaces are pressed together with a pressure of 10 atm in
pure water (monovalent counterions only, no added electrolyte) at 25°C. If the surfaces carry
surface charges of densities ¢, = —0.04 C m~? and ¢, = —0.08 C m~?, respectively, due to the
surface dissociation of monovalent surface ions, what will be their equilibrium separation?

Answer: Referring to Figure 14.4 and the equations describing K, the ionic distribution,
potential, and pressure for the symmetrical case, it is clear that the two halves of the system on
either side of the midplane at x = 0 are completely independent of each other as long as pp and
T are fixed (which determine K, py, ¥« and P). For the asymmetric case, these same equations
apply on either side of the plane at which E = —dy//dx = 0, which redefines x = 0. All that needs
to be done is to find the distance D; and D, on either side of x = 0, where the surface
change densities are equal to ¢; and 05, respectively, as given by Eq. (14.12). Thus, from
Eq. (14.19) a pressure of P = 10 atm = 1.013 x 10°Nm™2 at 25°C corresponds to
K = (ze/kT)\/P/2epe =(1.602 x 107'9/1.381 x 10~%3 x 298.15) x [(1.013 x 10°%/(2 x 8.854 x
107'% x 78.5)]"? = 1.05031 x 10° m™'. Inserting this value into Eq. (14.12) to get 1 D for
01 = —0.04 and ¢, = —0.08 C m~2 gives 3D; = 0.78 nm and } D, = 1.08 nm, respectively. The
separation is therefore D = 1 D; + } D, = 1.86 nm.

14.8 Limit of Large Separations: Thick Wetting Films
At large distances D— «, in order to keep tan(KD/2) finite in Eq. (14.12b), K must
approach w/D. In this limit the pressure, Eq. (14.19), therefore becomes

P(D) = 2epe(nkT /ze)* /0P, (14.20)

that is, P(D)x +1/D7,
which is known as the Langmuir equation. The Langmuir equation has been used to
account for the equilibrium thickness of thick wetting films of water on glass surfaces
(Figures 12.1f and 14.6). Here the water-air surface replaces the midplane of Figure 14.2
so that for a film of thickness d = D/2, we have

P(d) = eoe(nkT/ze)? /2d?, (14.21)
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Water surface, ", " .~

FIGURE 14.6 A water film on a charged (ionizable) glass surface will tend to thicken because of the repulsive
“disjoining pressure” of the counterions in the film. If the vapor over the film is saturated, the film will grow
indefinitely, but if it is unsaturated, the equilibrium thickness d will be finite as given by Egs. (14.21) and (14.22).

which is sometimes referred to as the disjoining pressure of a film. This repulsive pressure
is entirely analogous to the repulsive van der Waals force across adsorbed liquid films,
such as helium (Section 13.9), that causes them to climb up or spread on surfaces. Note,
however, that both the magnitude and range of the double-layer repulsion is usually
greater than the van der Waals’ (P « 1/d” instead of P « 1/d°).

In Section 13.9 we saw that the equilibrium thickness d of a wetting film is given by one
or other of the following equivalent equations

P(d) = +mgH/v = —(kT/v)log(p/psat), (14.22)

where H is the height of the film above the surface of the bulk liquid, v and m the
molecular volume and mass of the solvent (p = m/v), and p/pgy the relative vapor
pressure. Thus, if water condenses on a charged surface from undersaturated vapor, the
film thickness d will increase to infinity as H approaches zero or, equivalently, as p
approaches psar (100% relative humidity).

Langmuir (1938) first applied Eq. (14.21) to explain the then paradoxical “Jones-Ray
Effect,” where the rise of water up a capillary tube is observed to be higher than expected
from the Laplace Equation (Chapter 17). Langmuir’s explanation was that since the water
also wets the inner surface of the capillary, the effective radius of the tube is smaller than
the dry radius, and this leads to the higher capillary rise.

Derjaguin and Kusakov (1939) measured how the thickness of a water film on a quartz
glass surface decreased when an air bubble was progressively pressed down on the film.
The results were in rough agreement with the Langmuir equation. Read and Kitchener
(1969) repeated these measurements and again found only rough agreement between
theory and experiment: in the range 30-130 nm the measured film thicknesses were 10-20
nm thicker than expected theoretically. Later, Derjaguin and Churaev (1974), Pashley and
Kitchener (1979), and Gee et al., (1990b) used the vapor pressure control method to
measure the equilibrium film thickness and found that for d < 30 nm the films are much
thicker than expected from Eq. (14.22). These effects are believed to be due to one or both
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of the following: (1) The air-water and hydrocarbon-water interfaces are known to be
negatively charged due to the preferential accumulation of OH™ ions or depletion of
H30" ions at these interfaces (Taylor and Wood, 1957; Usui et al., 1981; Marinova et al.,
1996; Beattie, 2007), so that for a given disjoining pressure P or vapor pressure p the film
thickness would indeed be higher than given by Eq. (14.21), which assumes ¢ = 0 and
dy/dx = 0 at that interface; and/or (2) the presence of even small amounts of soluble
contaminants in the films will lower pg, in Eq. (14.22), which will result in a large increase
in the thickness of the film at any given value of p (Pashley, 1980).

Worked Example 14.4

Question: What are the thermodynamic equilibrium radii of the charged water droplets of
Problem 3.7 after fragmentation in an atmosphere of relative humidity pyap/psar = 50% at 20°C?

Answer: The surface tension or energy of a surface v is defined by the isothermal work done
on changing the area of the surface: dG = ydA. For a water droplet with a net charge Q
uniformly distributed on its surface, G = 4wR?y, + Q*/8meR, where 7 is the surface tension
of pure water (Yo =73 x 107> N m™"' at T= 293 K), and A = 47R? is the surface area. This gives
v = vo(1 — Q?/647%egyoR®). At thermodynamic equilibrium, the Laplace pressure of the
droplet, given by Eq. (17.15): P = 2v/R, equals the pressure of the undersaturated vapor, given
by Eq. (14.22): P = —(RT/V)10g(Pvap/Psar), Where V = 18 ml is the molar volume of water.*
When there is only one charge left per droplet, Q = e, the average equilibrium radius of each
droplet will therefore be (8.3 x 293/18 x 107%)log.0.5 = —9.4 x 10" = 2 x 0.073[1 — (1.602 x
10792/ (647> x 8.854 x 107'? x 0.073R®]/R , which is satisfied by R = 0.37 nm, corresponding
to a droplet containing about 6 water molecules around the ion.

“For water, based on molar parameters, R/V = 8.3/18 x 107® = 4.6 x 10° N m~2 K~!. This can also be
expressed in terms of molecular parameters: k/v = 1.38 x 107%*/30 x 107> Nm 2 K.,
HENR

14.9 Limit of Small Separations: Osmotic Limit
and Charge Regulation

At small separations, as D — 0, it is easy to verify from Eq. (14.12) that K 2 _gzelegekTD
(note that K2 is positive since ¢ and z must have opposite signs). Thus, the repulsive
pressure P of Eq. (14.19) approaches infinity according to

P(D — 0) = —20kT/zeD. (14.23)

From Egs. (14.13) and (14.11) we further find that as D — 0 the counterion density profile
between the surfaces becomes uniform and equal to
Py = ps = pg = —20/zeD atall x. (14.24)

Since —20/zeD is the number density of counterions in the gap, this means that the
limiting pressure of Eq. (14.23) is simply the osmotic pressure P = pkT of an ideal gas at
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the same density as the trapped counterions. This is known as the osmotic limit, which
applies to any system where ions, atoms, or molecules remain confined or trapped
between two surfaces as they approach each other. In the present case the trapping is due
to the requirement of maintaining electroneutrality in the gap that prevents the coun-
terions from going into the surrounding bulk liquid reservoir; in other cases it may be due
to the covalent attachment of, for example, polymer molecules to the surfaces. Yet in
other cases the trapped molecules may indeed leave the gap, in which case the density p is
not proportional to 1/D and the resulting pressure can be repulsive, attractive, or oscil-
latory, as discussed in later chapters.

The infinite pressure as D — 0 implied by Eq. (14.23) is, of course, unrealistic and arises
from the assumption that the total number of ions in the gap does not change—that is,
that ¢ = constant, which further implies that the surfaces remain fully ionized even when
there is a very large pressure pushing the counterions back against the surfaces. In practice
when two surfaces are finally forced into molecular contact the counterions are forced to
readsorb onto their original surface sites. Thus, as D approaches zero the surface charge
density ¢ also falls—that is, ¢ becomes a function of D. This is known as charge regulation,
and its effect is to reduce the repulsion below that calculated on the assumption of
constant surface charge. Charge regulation can also arise at isolated surfaces from
changes in the solution conditions (rather than from a change in D). These two mecha-
nisms are interdependent and are discussed further in Section 14.17. In addition, other
effects and forces can also come in at small separations, and these can be equally
important in determining the short-range and especially the adhesion forces at contact.

14.10 Charged Surfaces in Electrolyte Solutions

It is far more common for charged surfaces or particles to interact across or in a solution
that already contains electrolyte ions (dissociated inorganic salts). In animal fluids, ions
are present in concentrations of about 0.2 M, mainly NaCl or KCl with smaller amounts of
MgCl, and CaCl,. The oceans have a similar relative composition of these salts but at
a higher total concentration, about 0.6 M. Note that even “pure water” at pH 7 is strictly
an electrolyte solution containing 10~° M of H30" and OH ™ ions, which cannot always be
ignored. For example, for a charged isolated surface exposed to a solvent containing no
added electrolyte ions (only the counterions), Eqs. (14.9) and (14.12) readily show that for
the isolated surface, for which D — «, we obtain KD — 7 and ys — . As we shall see, this
unrealistic situation is removed as soon as the bulk solvent contains even the minutest
concentration of electrolyte ions.

The existence of a “bulk reservoir” of electrolyte ions has a profound effect not only on
the electrostatic potential but also on the forces between charged surfaces, and in the rest
of this chapter we shall consider this interaction as well as the total interaction when the
ever-present van der Waals force is added. But to understand the double-layer interaction
between two surfaces it is necessary to first understand the ionic distribution adjacent to
an isolated surface in contact with an electrolyte solution. Consider an isolated surface, or
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FIGURE 14.7 Near a negatively charged surface there is an accumulation of counterions (ions of opposite charge to
the surface coions) and a depletion of coions, shown graphically below for a 1:1 electrolyte, where p., is the electrolyte
concentration in the bulk or “reservoir” at x = «. Counterions can adsorb to the surface in the dehydrated, partially
hydrated, or fully hydrated state. The OHP is the plane beyond which the ions obey the Poisson-Boltzmann equation.
This plane is usually farther out than the van der Waals plane.

two surfaces far apart, in an aqueous electrolyte (Figure 14.7). For convenience, we shall
put x = 0 at the surface rather than at the midplane. Now, all the fundamental equations
derived in the previous sections are applicable to solutions containing different types of
ions i (of valency z;) so long as this is taken into account by expressing the net charge
density at any point x as ) z;ep,; and the total ionic concentration (number density) as

> pyi- Thus, Eq. (14.2) for lthe Boltzmann distribution of ions i at x now becomes.
l pri = paie VT (14.25)
while at the surface, at x = 0, the contact values of p and ¥ are related by
poi = panje KT, (14.26)

where pj is the ionic concentration of ions i in the bulk (at x = =) where ¥ = 0. For
example, if we have a solution containing H"OH ™ + Na'Cl~ + Ca*" Cl,, etc., we may write

Solution values Contact values

HT], = [H*]we‘e‘%/“, [HY], = [Hﬂwe—e%/kT7

[Na'], = [Na'], e ¥/ [Na®], = [Na'], e /kT (14.27)
[Ca2+]x _ [Ca2+]we*29‘*x/kT, [Ca2+]0 _ [CaZ-%—]me.fze‘lfo/kT7

[ClI7], = [Cl 7], ete¥/kT [ClI7], = [Cl7],eteVo/kT,
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where [Na'], and so on are expressed in some convenient concentration unit such as
M (1 M = 1 mol dm* and corresponds to a number density of p = 6.022 x 10°° m3).

14.11 The Grahame Equation

Let us now find the total concentration of ions at an isolated surface of charge density ¢.
From Eq. (14.8) this is immediately given by

> poi = Y puwi+0°/260ekT  (in number per m?). (14.28)
i i

Thus, for ¢ = —0.2 C m~2 (corresponding to one electronic charge per 0.8 nm? or 80A?) at
25°C, we find 6%/2¢9ekT=7.0 x 10" m > =11.64 M. Fora 1:1 electrolyte such as NaCl, the
surface concentration of ions in this case is

[Na*]y 4 [CI7], = 11.64 + [Nat], +[ClI7],, = 11.64+2[Na*], = 11.64+2[NaCl|M, (14.29a)
while for a 2:1 electrolyte such as CaCly,

[Ca®"], 4+ [Cl7], = 11.64 + [Ca®'], +[Cl7],, = 11.64 +3[Ca*"], = 11.64 + 3[CaCly] M,
(14.29b)
where [NaCl] and [CaCl,] are the bulk molar concentrations of the salts. The ions at the
surface are, of course, mainly the counterions (e.g., Na™ or Ca®" at a negatively charged
surface) and their excess concentration at the surface over that in the bulk is seen to be (1)
dependent solely on the surface charge density o—that is, independent of the bulk
electrolyte concentration—and (2) of magnitude sufficient to balance much of the surface
charge (cf. Sections 14.4 and 14.15).
We may now find the relation between the surface charge density ¢ and the surface
potential . Incorporating Eq. (14.26) into Eq. (14.28), we obtain for the case of a mixed
NaCl + CaCl; electrolyte:

o* = ZfofkT<Z Poi — me‘)
i i
= 2¢pekT{[Na®], e /*T 1 [Ca?*] e 2¥/kT 1 [CI7]  et¥ /T _ [Na®], — [Ca®*], —[Cl7],}.

On further noting that [Cl ]« — [Na']« + 2[Ca®*] the above becomes
0,2 _ zeoekT{[Naf]m(efe\//o/kT + e+e%/kT o 2) + [Ca2+]w (9728\1/0/kT + 26+e%/kT _ 3)}’
so that finally we obtain the Grahame equation (Grahame, 1953)

V/8egekTsinh(eyq/2kT){[Na*],, + [Ca®t], (2 + e ¢¥/kT)}1/2
0.117sinh(yq/51.4){[NaCl] + [CaCly] , (2 + e ¥/57)}1/2 Cm~2 (14.30)

g

at 25°C, where the bulk concentrations [NaCl] = [Na*]. and [CaCl,] = [Ca®']. are in M,
Yo inmV, and ¢ in Cm~? (1 C m™? corresponds to one electronic charge per 0.16 nm? or



Chapter 14 » Electrostatic Forces between Surfaces in Liquids 309

16A2). For example, a surface having a typical potential of —75 mV in, say, physiological
saline solution (150 mM NaCl) has a surface charge density of ¢ = 0.117 1/0.150
sinh(—75.0/51.4) = —0.0922 C m 2. Thus, each charge occupies 0.16/0.092 = 1.7 nm? or
~170A2, the mean separation between charges on the surface being about 13A. Equation
(14.30) allows us to calculate o once ¥ is known, or vice versa, from which the indi-
vidual counterion concentrations at each surface py; can be obtained using Eqs. (14.26)
or (14.27). We shall now consider some implications of the Grahame equation, bearing
in mind that it does not predict o or Y, but just relates them.

14.12 Surface Charge and Potential of
Isolated Surfaces

For an aqueous 1:1 electrolyte solution such as NaCl against a negatively charged surface
of ¢ = —0.2 C m~?, we obtain the potentials shown in the middle column of Table 14.1.
Note that for no electrolyte we obtain an infinite potential, which is unrealistic; a pure
liquid such as water will always contain some dissociated ions. It is for this reason that we
did not consider an isolated surface in the absence of bulk electrolyte ions in Section 14.5.
From Table 14.1 we find that at constant surface charge density the surface potential falls
progressively as the electrolyte concentration rises. From the tabulated values of ¥, we
can determine the ionic concentrations at the surface using Eq. (14.27). For example, in
1077 M 1:1 electrolyte, where ¥y = —477.1 mV, we obtain 1077 x e"7"1/2569 — 11 64 M
for the counterions, and 107 x e 4771/2569 =~ 107> M for the coions. In 1 M, where
Yo = —67.0 mV, we obtain 13.57 M and 0.07 M for the counterions and coions, respec-
tively, which total 13.64 M. As expected, the total concentration of all the ions at the
surface agrees exactly with that predicted by Eq. (14.29).

In most cases neither ¢ nor y( remains constant as the solution conditions change.
This is because ionizable surface sites are rarely fully dissociated but are partially
neutralized by the binding of specific ions from the solution. Such ions or surfaces are

Table 14.1 Variation of Surface Potential with Aqueous Electrolyte
Concentration for a Planar Surface of Charge Density —0.2 C m~? as

Deduced from the Grahame Equation, Eq. (14.30).

Yo (mV)

1:1 Electrolyte Pure 1:1 Electrolyte Bulk Solution Also Contains
Concentration (M) Solution 3 mM 2:1 Electrolyte

0 (hypothetical) — -106

1077 (pure water) —477 —106

10°* -300 -106

1073 241 —-106

1072 -181 -105

107" -123 -100

1 —67 —66
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often referred to as exchangeable ions or surfaces, in contrast to those inert ions that do
not bind to the surface. For example, if only protons can bind to a negatively charged
surface, the equilibrium condition at the surface is given by the familiar mass action
equation (Payens, 1955). Thus, for the reaction

K,
SHe S + H* at the surface,

where Ky is the surface dissociation constant. We may express the proton concentration
at the surface as [H"]y, the concentration or surface density of negative (dissociated)
surface sites as [S™ 1o, and the density of neutral (undissociated) sites as [SH],. The surface
charge density ¢ is related to [S™]o via ¢ = —e[S™]o. Proton concentrations [H'] are usually
given in pH units, defined by pH = —log;o[H"].” The surface dissociation constant Ky is
defined by

_ [87]e[H ]
Ko =g, (14.31)
ap« o [HJF}me—e\[/n/kT7 (14.32)

~ oo(1— a)[HﬂO T 1-a

where gy is the maximum possible charge density (i.e., if all the sites were dissociated)
and « is the fraction of sites actually dissociated.

Another important property of an ionizable surface is its pK value, which is the bulk
pH? at which half of its charged sites are dissociated (« = 0.5). At this point Eq. (14.32)
shows that Ky = [H ] o e VKT, Thus, the pK can be directly equated with the dissociation
constant. For example, if half the sites are dissociated at [H"], = [H*]ZK =107*M (pH
4.0), we would say that the pK of the surface is 4.0. If both K4 and ¥, remain constant as
the pH changes, then at any different [H"] . or pH the fraction of dissociated sites can be
written as
Kq I £ 0 AR (e

HAPK ), 1074+ L

a (14.33)

= Kq+ [H+]we—e\p(,/kT -
Thus, at pH 3 (corresponding to ten times the proton concentration at the pK) we find
o = 0.09, while at pH 5 (ten times lower proton concentration) we find « = 0.91.

For a mixed 1:1 electrolyte consisting of inert (non-surface-binding) and surface-
binding H" ions—for example, a mixture of NaCl and HCI—Eq. (14.32) can be combined
with the Grahame equation to give the simultaneous equations

o = aog = Kyoo/(Kgq + [HCI] e ¥/?>7) = 0.117sinh(y,/51.4)/[NaCl] , + [HCI], (14.34)

in which both ¢ and ¥, can now be totally determined in terms of the maximum charge
density gy and dissociation constant Ky. It is clear from the above that if Ky is very

SNote that if the pH is defined in terms of the concentration (number density) of protons, then the surface
pH of —log;o[H*]y is different from the bulk pH of —log;o[H"].. However, if the pH is defined in terms of
the activity of the protons, the two values are identical, since they are now being equated with the chemical
potential of the protons.
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large (high surface charge, weak binding of protons), then ¢ = ¢y = constant, and we
obtain the earlier result for the case of fixed surface charge density. However, if Ky takes
on a more typical value, the effect can be quite dramatic. For example, if Ky = 10~* M,
then for a surface of 6o = —0.2 C m~?in a 0.1 M NaCl bulk solution at pH 7, we find ¥ =
—118 mV and « = 0.91—that is, the protons have neutralized 9% of the surface sites, and
Yy is not very different from the value in the absence of protons (see Table 14.1). But at
pH 5 we obtain ¥y = —73 mV and « = 0.36—that is, only 36% of the sites now remain
dissociated even though the bulk concentration of HCl is a mere 0.01% of the NaCl
concentration. Under such conditions the proton is referred to as a potential determining
ion. Thus, both ¥, and ¢ will vary as the salt concentration or pH is changed, but the
surface will always remain negatively charged.

More generally, a surface may contain both anionic (e.g., acidic) and cationic (e.g.,
basic) groups to which various cations and anions can bind. Such surfaces are known as
amphoteric, and the competitive adsorption of ions to them can be analyzed by assigning
a binding constant to each ion type, and then incorporating these into the Grahame
equation (Healy and White, 1978; Chan et al., 1980a). The charge density of amphoteric
surfaces (e.g., protein surfaces) can be negative or positive depending on the electrolyte
conditions. At the isoelectric point (iep) or point of zero charge (pzc) there are as
many negative charges as positive charges so that the mean surface charge density is zero
(6 = 0), although it is important to remember that there may still be local regions of high
negative or positive charge. Such discrete local charges become crucially important for
determining the short-range and adhesion forces between amphoteric surfaces and
biological macromolecules, and we return to consider such acid-base and protein-
substrate interactions in later sections and in Part III.

14.13 Effect of Divalent lons

The presence of divalent cations has a dramatic effect on the surface potential and
counterion distribution at a negatively charged surface. For example, if all the NaCl
solutions of Table 14.1 also contain 3 x 10~> M CaCl,, the Grahame equation gives the
potentials shown in the third column. We see that even at constant surface charge
density, relatively small amounts of divalent ions substantially lower the magnitude of ¥,
in fact, about 100 times more effectively than increasing the concentration of monovalent
salt. Indeed, y; is determined solely by the divalent cations once their concentration is
greater than about 3% of the monovalent ion concentration, and for 2:1 electrolyte
concentrations above a few mM, typical surface potentials are well below —100 mV
irrespective of the 1:1 electrolyte concentration.

Further, even when the bulk concentration of Ca®* is much smaller than that of Na™,
the surface may have a much higher local concentration of Ca**. For example, in 100 mM
NaCl + 3 mM CacCl,, where ¥ = —100 mV (see Table 14.1) the concentration of Ca®t at
the surfaceis [Ca®"]y = 3 x1073¢*?°%7 = 7 M compared to [Na']y = 0.1 109257 = 5 M.
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At such high surface concentrations (of doubly charged ions) divalent ions often bind
chemically to negative surface sites, thereby lowering ¢ and reducing v, even further, and
it is not unusual for surfaces to be completely neutralized (¢ — 0, Yy — 0) in the presence
of mM amounts of Ca®". In the case of trivalent ions such as La®>*, bulk concentrations in
excess of 107> M can neutralize a negatively charged surface and even lead to charge
reversal wherein the cations continue to adsorb onto a surface that is already net posi-
tively charged (see Problem 3. 2(ii)).

As in the case of monovalent ion binding, the effect of divalent ion binding can be
dealt with quantitatively by incorporating the appropriate binding constants into the
Grahame equation (Healy and White, 1978; McLaughlin et al., 1981), and when many
different ionic species (e.g., Ca’t, H) compete for binding sites the variation of ¥ and ¢
with electrolyte concentration and pH can be quite complex. In most cases ion binding
tends to lower both ¢ and Y, as the concentrations of these ions increase, and we may
anticipate that such effects lead to a substantial reduction in the repulsive double-layer
forces between surfaces.

14.14 The Debye Length

For low potentials, below about 25 mV, the Grahame equation simplifies to

o = goeky, (14.35)

where

K = (meiezz;? /eoekT) Vet (14.36)
i

Thus, the potential becomes proportional to the surface charge density. Equation (14.35)
is the same as Eq. (14.14) for a capacitor whose two plates are separated by a distance 1/«,
have charge densities +¢, and potential difference ¥y. This analogy with a charged
capacitor gave rise to the name diffuse electric double-layer for describing the ionic
atmosphere near a charged surface, whose characteristic length or “thickness” is known
as the Debye length, 1/«.

The magnitude of the Debye length depends solely on the properties of the solution
and not on any property of the surface such as its charge or potential. For a monovalent
electrolyte (z = 1) at 25°C (298K) the Debye length of aqueous solutions is

8.854 x 10712 x 78.4 x 1.381 x 1023 x 298
2 % 6.022 x 1026 x (1.602 x 10-19)2M

1/2
KV = (e0ekT /2p € )% = ( ) =0.304x107%/vM m.
Thus,

0.304/+/[NaCl] nm for 1:1 electrolytes (e.g., NaCl)
1/k = 0.176/4/[CaCl,] nm for 2:1 and 1:2 electrolytes (e.g., CaCl,, Na;SO4) (14.37)
0.152/,/[MgSO,| nm for 2:2 electrolytes (e.g., MgSO,)
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For example, for NaCl solution, 1/k = 30.4 nm at 107*M, 9.6 nm at 1 mM, 0.96 nm at 0.1 M,
and 0.3 nm at 1 M. In totally pure water at pH 7, the Debye length is 960 nm, or about 1 um.

14.15 Variation of Potential ¥ and lonic
Concentrations py Away from a Surface

The potential gradient at any distance x from an isolated surface is given by Eq. (14.7):

> pyi = me, 28]2‘;( ‘//) (14.38)
i
For a 1:1 electrolyte this gives

dy/dx = \/8kTpw;/eoe sinh(ey, /2kT),
which may be readily integrated using the integral [cschX dX = log tanh(X/2) to yield

—KX
-
where®
v = tanh(ey,/4kT) = tanh[y,(mV)/103] at 25°C. (14.40)

This is known as the Gouy-Chapman theory. For high potentials v — 1, while for poten-
tials less than 25 mV, Eq. (14.39) reduces to the so-called Debye-Hiickel equation

vy = Ype ", (14.41)

where again the Debye length 1/ appears as the characteristic decay length of the
potential [see Verwey and Overbeek (1948) and Hiemenz (1997) for a fuller discussion of
the Gouy-Chapman and Debye-Hiickel theories].

The above equations apply to symmetrical 1:1 electrolyte solutions, such as NaCl.
Equations that apply to asymmetrical electrolytes—for example, 2:1 and 1:2 electrolytes
such as CaCl, and Na,SOs;—have been derived by Grahame (1953). These are more
complicated than Eq. (14.39), but for low Y, they all reduce to ¥, = Ype .

We now have all the equations needed for computing the ionic distributions away from
a charged surface. For a 1:1 electrolyte, this is given by inserting Eq. (14.39) into Eq. (14.25)
or (14.27). Figure 14.8 shows the variation of ¥, and p, for a 0.1 M 1:1 electrolyte, together
with a Monte Carlo simulation for comparison. Note how the counterion density
approaches the bulk value much faster than would be indicated by the Debye length.
Indeed, for such a high surface charge density and potential the counterion distribution
very near the surface is largely independent of the bulk electrolyte concentration, and it is
left as an exercise for the reader to verify that even in 10~* M the counterion profile over the
first few angstroms is not much different from that in 0.1 M (so long as ¢ remains the same).

Stanh x = (¢ — e )/ (e" + e ).
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FIGURE 14.8 Potential and ionic density profiles for a 0.1 M monovalent electrolyte such as NaCl near a surface of
charge density 0 = —0.0621 C m~2 (about one electronic charge per 2.6 nm?), calculated from Egs. (14.39) and (14.25)
with Yo = —66.2 mV obtained from the Grahame equation. The crosses are the Monte Carlo results of Torrie and
Valleau (1979, 1980). Note that the potential (and force between two surfaces) both decay asymptotically as e ™,
while the ionic concentrations decay much more sharply.

14.16 Electrostatic Double-Layer Interaction Forces
and Energies between Various Particle Surfaces

The interaction pressure between two identically charged surfaces in an electrolyte
solution (Figure 14.9) can be derived quite simply as follows. First, from Section 14.7 we
note that at any point x the pressure P,(D) is given by
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Bulk electrolyte reservoir

FIGURE 14.9
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Second, from Eq. (14.7) we have

S =Y it dyy® (14.43)
: Pxi = : Pmi 2kT \ dx . .

for any x or D, where Spp; is the total ionic concentration at the midplane at x = JD.
Incorporating Eq. (14.43) into Eq. (14.42), and again putting Py(D = «) = 0, yields two
useful and equivalent expressions for the pressure:

5 ouD) = 30| = kT[S puilD) =S omit=)| ()

which, as before, is the uniform pressure across the gap (independent of position x)
acting on the electrolyte ions and on the surfaces. The above result is essentially the
same as Eqgs. (14.17) and (14.18) and shows that P is simply the excess osmotic pressure of
the ions at the surfaces or in the midplane. Since Zpp;(e) is known from the bulk elec-
trolyte concentration the problem reduces to finding the midplane concentration of ions
pmi(D) when D is finite, and it is here that certain assumptions have to be made to obtain
an analytic result (Verwey and Overbeek, 1948). For a 1:1 electrolyte such as NaCl,
Eq. (14.44) may be written as

Py(D) = kT

P = kTpg[(e®¥n/kT 1) 4 (et®¥n/kT _1)] = 2kTp, [cosh(eyy/kT) — 1]
cations anions

=e*y2 p., /KT for Yy, <25mV, (14.46)

(14.45)
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which assumes that the midplane potential ¥y, (not the surface potential ;) is small. If
we further assume that /r, is simply the sum of the potentials from each surface at x = 1D
as previously derived for an isolated surface, then Eq. (14.39) gives Y, = 2(4kTy/e)e P2,
Inserting this into Eq. (14.46) gives the final result for the repulsive pressure between two
planar surfaces across a 1:1 electrolyte:

P = 64kTp,y?e P = (1.59 x 10®)[NaCljy?e P Nm2  at25°C (298 K), (14.47)
where we note that v = tanh(zeyy/4kT) can never exceed unity. Equation (14.47) is known
as the weak overlap approximation or linear superposition approximation (SLA) for the
interaction between two similar surfaces at constant potential.

The interaction free energy per unit area corresponding to the above pressure is
obtained by a simple integration with respect to D, and gives

Wiats = (64kTpov?/x)e P (14.48)
= 0.0482[NaCl]'/? tanh?[y,(mV)/103]e ™ Jm=2  (for 1:1 electrolytes) (14.49)
= 0.0211[MgS0,]"/? tanh?[2y,(mV)/103]e*® Jm™2  (for 2:2 electrolytes), (14.50)

where in the above equations the bulk concentrations [NaCl] and [MgSO,] are in M. There
is no simple expression for 2:1 or 1:2 electrolytes, or for mixed 1:1 and 2:1 electrolytes
(Chan, 2002), but it is interesting to note that for surface potentials between 50 and 80 mV
the values of 0.0482 tanh? [,/103] and 0.0211 tanh? [2y/103] differ by less than 20%,
suggesting that either of the above equations provides a good approximation so long as the
correct Debye length is used (which can always be accurately calculated using Eq. (14.36).

Applying the Derjaguin approximation, Eq. (11.16), we may immediately write the
expression for the force F between two spheres of radius R as F = mRW, from which the
interaction free energy is obtained by a further integration (see Sader et al., 1995, for more
accurate formulae for spheres):

Wipheres = (647kTRpo,v*/k*)e P = 4.61 x 107" Ry?e™*P ] (for 1:1 electrolytes). ~ (14.51)

We see therefore that the double-layer interaction between surfaces or particles of
different geometries always decays exponentially with distance with a characteristic
decay length equal to the Debye length. This is quite different from the van der Waals
interaction where the decay is a power law having very different exponents for different
geometries. Figure 13.1 gave the different expressions for the van der Waals forces and
energies between bodies of different geometries in terms of their dimensions and the
Hamaker Constant. Figure 14.10 is a similar figure for the double-layer forces and

energies, given in terms of the dimensions of the particles, the Debye length k!, and an

“interaction constant” Z defined by
Z = 64meoe(kT/e)® tanh?(zey,y/4kT) J m 'or N (14.52)
= (9.22 x 10~'1) tanh?(y,/103) J m~! at 25°C or 298 K (room temperature ) (14.53)

= (9.38 x 107 tanh?(y,,/107) ] m~! at 37°C or 310 K (physiological temperature)  (14.54)
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FIGURE 14.10 Electrostatic double-layer interaction energies W(D) and forces (F = —dW/dD) between similar

constant potential surfaces of different geometries in terms of the interaction constant Z defined by Eq. (14.52). For
amonovalent 1:1 electrolyte such as NaCl (z = 1), Z = 64mege(kT/e) tanh?(eyo/a4kT) = (9.22 x 10~ "" tanh?(»/103) ) m~'at
25°Cand (9.38 x 10~ "") tanh?(/x/107) J m~" at 37°C (body temperature). The Debye length, ', is defined by Eq. (14.36).

where Y is in mV. The interaction constant Z is analogous to the Hamaker Constant A4,
and—apart from the electrolyte valency z—depends only on the properties of the
surfaces. The other terms that appear in the expressions for the interaction energies and
forces, such as k, depend only on the solution and on the geometry and separation of the
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surfaces. Note that the interaction constant Z is defined in terms of the surface potential
Yy of the isolated surfaces (at D = =), but it can also be expressed in terms of the surface
charge density ¢ by applying the Grahame Equation.

As an example of the use of Figure 4.10, the double-layer energy for two identical
spheres of radius R is given in the 4th row as W(D) = ZRR, e *P/(R; + Ry) =
1ZRe™P =(4.61 x 10 "R tanh®(o/103)e “" J, which is the same as Eq. (14.51).

Itisimportant to note that with increasing ionic strength, even though the Debye length
falls due to the increased screening of the electric field, the asymptotic short-range force or
energy can increase, depending on the geometry of the particles. This unintuitive result
arises for those geometries in Figure 14.10, where « appears in the numerator, for example,
as occurs for both the energy and force between two planar surfaces. For such systems, as
D — 0and e *P — 1, the repulsion at constant potential (Z = constant) is seen to increase
with increasingionic strength (increasing «). This has important implications for the short-
range and adhesion forces in aqueous solutions, as discussed later (cf. Figure 14.15).

At low surface potentials, below about 25 mV, all the above equations simplify to the
following: For two planar surfaces,

P = 2epex?y3e P = 26%e7P Jege Nm™2 (14.55)
and

W = 2¢exyde ™D = 26%e7P [kege Jm ™2 (14.56)
while for two spheres of radius R,

F = 2nRegexyie™ P = 2nRo%e P Jkege N (14.57)
and

W = 2wRegeyie P = 2wRo?e P /i?epe . (14.58)

In the above, ¥ and ¢ are related by ¢ = ¢gekyy, which, as we have seen, is valid for low
potentials. These four equations are quite useful because they are valid for all electrolytes,
whether 1:1, 2:1, 2:2, 3:1, or even mixtures as long as the appropriate Debye lengths are
used as given by Eqgs. (14.36)—(14.37). Thus, they are particularly suitable when divalent
ions are present, since the surface charge and potential is often low due to ion binding.

14.17 Exact Solutions for Constant Charge and
Constant Potential Interactions: Charge
Regulation

All the expressions derived so far are accurate only for surface separations beyond about
one Debye length. At smaller separations one must resort to numerical solutions of the
Poisson-Boltzmann equation to obtain the exact interaction potential (Verwey and
Overbeek, 1948; Devereux and De Bruyn, 1963; Honig and Mul, 1971) for which there are
no simple expressions that cover all possible situations. Figures 14.11 and 14.12 show
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FIGURE 14.11 Repulsive double-layer interaction energy for two planar surfaces in a 1:1 electrolyte [exact solution
kindly computed by M. Sculley, R. Pashley, and L. White based on Ninham and Parsegian (1971)]. ¥y is the potential of
the isolated surfaces and C the electrolyte concentration in M, which is related to the Debye length by 1/k = 0.304/
+/C nm. Theoretically, the double-layer interaction must lie between the constant-charge and constant-potential
limits. (---) constant charge, (—) constant potential. However, these limits are based on the validity of the Poisson-
Boltzmann (PB) equation; if other forces, such as ion-correlation, hydrophobic, or steric-hydration, are present, the
interaction can be more attractive or more repulsive. At separations greater than 1/k the forces and energies are well
described by Eqgs. (14.47)—(14.51) for z = 1.
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FIGURE 14.12 Repulsive double-layer interaction energy for two planar surfaces in a 2:1 electrolyte where the
counterions—that is, the ions of opposite charge to those on the surface—are divalent [computed as in Figure 14.11].
For 1:2 electrolytes (where the counterions are monovalent) the interaction is approximately as for a 1:1 electrolyte
but with the Debye length as for a 2:1 or 1:2 electrolyte—that is, Debye length 1/k = 0.176//C nm, where C is the
electrolyte concentration in M. (---) constant charge, (—) constant potential. At separations greater than 1/« the forces
are well described by Egs. (14.47)-(14.51) for z = 2.
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plots of the exact numerical solutions for the double-layer interaction potentials of two
planar surfaces in pure 1:1 and 1:2 electrolytes in the two limiting cases of constant charge
and constant potential. The figures may be used for reading off the interaction energy of
any 1:1 or 2:1 electrolyte at any desired concentration C, and surface separation D. This is
because the energy scales with v/C and the distance scales with the Debye length, k. The
constant potential curves of Figure 14.11 compare reasonably well with the approximate
expression of Eq. (14.48) even at small separations, and especially when y is between 50
and 100 mV. In contrast, as shown by the dashed curves in Figures 14.11 and 14.12,
interactions at constant charge are always greater than those at constant potential, espe-
cially at separations below 1-2 Debye lengths where they veer sharply upwards, becoming
infinite as D — 0, while the constant potential interaction tends toward a finite value.

In addition there is the question of charge regulation at small separations. In general,
neither the surface charge density nor the potential remain constant as two surfaces
come close together. Instead, as was discussed in Section 14.9, some of the counterions
are forced back onto the surfaces thereby reducing ¢. This affects the form of the inter-
action which now falls between the constant charge and constant potential limits. At large
distances, beyond a few k!, all the interaction pressures and energies merge and are well
described by the equations based on the Linear Superposition Approximation as listed in
Figure 14.10.

If there is no binding, the surface charge density remains constant, and in the limit of
small D the number density of monovalent counterions between the two surfaces will
approach a uniform value of 2¢/eD. From Eq. (14.44) the limiting pressure in this case is

P(D = 0) = kT py; = —20kT/zeD = +|20kT /zeD)|, (14.59)
i

and
W(D — 0) = (—20kT/ze)log D + constant, (14.60)

that is, as D — 0 the pressure and the energy become infinite. Note that this is the same
osmotic limit as in the case of no bulk electrolyte (counterions only), Eq. (14.23), and
results from the limiting osmotic pressure of the “trapped” counterions.

If there is counterion binding as D decreases—that is, charge regulation—P falls below
this limit, and the Poisson-Boltzmann equation must now be solved self-consistently by
including the dissociation constants of the adsorbing ions (cf. Section 14.12). The
computations have been described by Ninham and Parsegian (1971) and Healy et al,,
(1980), and simple numerical algorithms have been given by Chan et al., (1976, 1980b). So
long as the Poisson-Boltzmann equation remains valid, the double-layer forces between
two symmetrical charge-regulating surfaces always lie between the constant surface
charge and constant surface potential limits shown in Figures 14.11 and 14.12.” When the
PB equation breaks down—for example, when the electrolyte contains multivalent

“Although Borkovec and Behrens (2008) have suggested that under certain conditions the double-layer
interaction can be weaker than at constant potential.
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counterions—or when other forces, such as ion-correlation forces, are present, then the
resulting interaction can be very different and even change sign—that is, become
attractive. And the situation becomes much more complex for asymmetric surfaces, even
in the absence of charge regulation.

An often overlooked feature of a charge-regulating interaction is that as two surfaces
approach each other there is a continual exchange of ions with the bulk reservoir. This
takes time. If two surfaces are brought together quickly, the interaction may be at
constant charge even though the equilibrium interaction is at constant potential (Raviv
et al., 2002; Anderson et al., 2010).% And the issue is not only determined by the diffusion
of ions into and out of the interaction zone; quite often the ion exchange processes at the
interfaces is slow (minutes) and is the rate-limiting part of the overall interaction.

14.18 Asymmetric Surfaces

For two surfaces of different charge densities or potentials the interaction energy can
have a maximum or minimum at some finite distance, usually below 1/x. Approximate
equations for the interactions of two surfaces of unequal but constant potentials were
given by Hogg et al., (1966), Parsegian and Gingell (1972), Ohshima et al., (1982), and
Chan et al., (1995), and for unequal charges by Gregory (1975), and Ohshima (1995). The
“Hogg-Healy-Fuerstenau” equation (Hogg et al., 1966) for two planar surfaces of low
constant potentials in 1:1 electrolyte is

eoek[2y1 ¥y — (V2 + y3)e D)

-2
(¢ ¢~D) Jm (14.61)

W(D) =

which leads to a pressure of

dW  2e0ek?[(e™P + e Py — (Y] + ¥3)]
dD — (et D — e—KD)Z

P(D) = Nm™2. (14.62)
Approximate expressions for constant charge interactions are more complicated. The
following, proposed by Gregory (1975), is probably the simplest that is also reasonably
accurate for 1:1 electrolytes

23 1/2 {Z@(l[/l—ll/z)/kT}ze_KD
P(D) = pokT 2{1+ (%) } — —2| Nm™2. (14.63)

- (ze(wl +\//2)/kT>2

kD2 _ g—«kD/2

It is noteworthy that the double-layer forces between dissimilar surfaces can change
sign, depending on the conditions. For example, for constant potential interactions at
large separations, Eq. (14.62) tends to P(kD»1) = 2egex? y1,e“P. This is attractive when
Y1 and ¥, have opposite signs and repulsive when they have the same sign, and it reduces

8For a colloidal system at equilibrium, all the interactions are given by the equilibrium interaction potentials
even though the particles may be moving very rapidly in the solution. This is an example of Detailed Balance.
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to Eq. (14.55) when 7 = ¥». However, in the limit of D — 0, Eq. (14.62) tends to
P(D — 0) = —epex (¥; — ¥,)*/2D? which is always negative—that is, attractive.

The constant charge interaction at large separations, Eq. (14.63), reduces to
P(kD»1) = 4(p,22€®/kT) Y ¥eP = 2epex® Y1ype™P = 2k2010267P /ege, which is the
same as the constant potential limit. However, in the limit of D — 0, Eq. (14.63) tends to
P(D — 0) = +|(01 + 02) kT /zeD|, which reduces to Eq. (14.59) when ¢; = 7, and that is
always positive—that is, repulsive (see Problem 14.4).

All of the above equations assume no charge regulation and that the surface charges
are smeared out on each surface. Both of these assumptions are particularly dangerous
when the two surfaces are different. Such surfaces usually contain ion-exchangeable sites,
and their charges can often move about and redistribute as the surfaces come into
contact. Some of these issues, especially those involving “competitive adsorption,” have
been addressed by Ninham and Parsegian (1971), Prieve and Ruckenstein (1976), Chan
et al., (1980), Pashley (1981), Van Riemsdijk et al., (1986), Carnie and Chan (1993), and
Ettelaine and Buscall (1995), and are discussed again in later sections devoted to acid-
base interactions and the adhesion of amphoteric and biological surfaces.

At very large separations, above 1 pum or the dimensions of colloidal particles, there is
experimental evidence that the double-layer force can become weakly attractive even
between identical particles, which can result in phase separation (Ise and Yoshida,
1996). Sogami and Ise (1984) have proposed a potential—the “Sogami potential”—to
account for this effect, but it remains controversial both at the experimental and
theoretical levels.

14.19 lon-Condensation and lon-Correlation Forces

We may recall that for a system of charges that is overall electrically neutral the net
electrostatic (purely Coulombic) interaction is always attractive. This is the attraction that
leads to the formation of ionic crystals discussed in Section 3.4. However, as discussed
further in Section 3.8, in a medium of high dielectric constant such as water, the Coulomb
interaction is much reduced and thermal effects can now win out, causing the dissolution
of the ionic crystal. An important parameter that always arises when considering such
effects is the Bjerrum length Ag, which is the distance r between the centers of two unit
charges when their Coulomb energy, w(r) = €?/4meper, equals the thermal energy kT—
that is,

Ig = €% /AmegekT (14.64)
= 0.72 nm in water at25°C (¢ = 78.3).

The Bjerrum length appears often in equations associated with electrostatic interactions
in electrolyte solutions, such as double-layer, ion-condensation, and ion-correlation
interactions. For example, the Debye length, Eq. (14.36), can be expressed as
%(47rxgpwiz2)l/2, and the solubility of a 1:1 electrolyte, Eq. (3.18), can be expressed

i
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as Xs = e "/(@+a) where (a, +a_) is the distance between the centers of the ions. In
Section 3.8 we saw how this equation accounts for the higher solubility or dissociation of
larger ions (larger a, + a_). For example, when (a, + a_) = Ag we expect full dissociation
up to electrolyte concentrations of ~40% (mole/mole). For smaller and especially
multivalent ions such as Ca®", their tendency to dissociate is much reduced, and such
electrolytes or salts are much less soluble, and their ions in solution are often only
partially dissociated (or partially associated).

A similar effect arises at charged surfaces. Consider a small sphere of radius R where
the surface charges are separated by a mean distance d such that the total charge on the
sphere is Q = (47R?/d?)e. The Coulomb energy of bringing a small ion of radius a and
charge ze up to the sphere is zeQ/4mege(R + a). For small similarly sized monovalent ions
(Q = e, z = 1) this reduces to the expected equation: w(r) = e?/4meye(2a), but for a large
spheres (R » a) we obtain for the ion-surface binding energy:

w =~ zeQ/4negeR = 4mzkTRAg/d°. (14.65)

This equation shows that at constant surface charge density (fixed d), the binding energy
of a (counter)ion to an oppositely charged surface is higher (1) for larger spheres or
particles (larger R), (2) the closer the surface co-ions are to each higher (smaller d, higher
0), and (3) the higher the valency, z, of the binding counterion. The first two conclusions
show that the size of a macromolecule or small colloidal particle is important in deter-
mining its surface charge density ¢ and potential ¥»—the smaller the particle, the more
likely it is to be fully ionized.

The strength of ion binding also depends on the shapes or geometry of particles, being
stronger for planar surfaces, then cylindrical surfaces then spherical surfaces—an effect
that is referred to as charge, ion or “Manning” condensation (Manning, 1969; Ray and
Manning, 1996). For example, planar surfaces are generally less than 10% ionized or
dissociated, cylindrical (DNA or micelle) surfaces are typically ~20% ionized, small
spherical micelles are ~25% ionized (Pashley & Ninham, 1987), while individual ionizable
molecules, which can be considered as very small spheres, are often fully (close to 100%)
ionized. Equation (14.65) also shows why this effect is more pronounced for multivalent
counterions.

The effect of ion condensation is a reduced double-layer repulsion, especially between
planar and cylindrical structures such as clay sheets, charged lipid bilayers, DNA,
nanorods and microtubules in aqueous solutions, which is further enhanced when these
contain calcium or polyvalent ions (Bloomfield, 1991; Podgornik et al., 1994; Tang et al.,
1996). In reality, the binding energy of ions to surfaces in electrolyte solutions is much
more complex than given by Eq. (14.65) and depends, among other things, on the
absolute or relative values of R, a, A, d, and k1.

Whereas ion-condensation simply lowers the double-layer repulsion, there is another
counterion effect between similarly charged surfaces that gives rise to an attraction. This
is contrary to the Poisson-Boltzmann equation that predicts a repulsion at all separations
between equally charged surfaces. This additional electrostatic force was first proposed
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by Oosawa (1971) who considered the implications of having mobile (rather than fixed)
counterions in each double layer. These mobile ions, he argued, constitute a highly
polarizable (essentially conducting) layer at each interface whose fluctuations in density
must give rise to an attractive van der Waals—like force with another double-layer. This
force is not included in the Poisson-Boltzmann equation nor in the Lifshitz theory. Now
known as the ion-correlation or charge fluctuation force (Jonsson, 1980; Guldbrand et al.,
1984; Kjellander, 1988a) this attraction becomes significant at small distances (<4 nm),
and it increases with the surface charge density and valency of the counterions—just as
does the ion-condensation effect with which it is often associated (Rouzina and
Bloomfield, 1996; Gronbech-Jensen, 1997).

In the first Monte Carlo study of the ionic density distributions, interaction energies
and pressures between planar surfaces, spheres and cylinders, Wennerstrém and
colleagues (1982) concluded that between surfaces of high charge density the attractive
ion-correlation force can reduce the effective double-layer repulsion by 10—15% if the
counterions are monovalent. However, with divalent counterions such as Ca®" the ion-
correlation attraction was found to exceed the double-layer repulsion—the net force
becoming overall attractive—below about 2 nm, even in dilute electrolyte solutions. Such
short-range attractive ion-correlation forces have been measured between anionic
surfactant and lipid bilayers in CaCl, solutions, and they are believed to be responsible for
the strong adhesion or limited swelling of negatively charged clay surfaces in the presence
of divalent ions (Marra, 1986b, c; Khan et al., 1985; Kjellander et al., 1988a, b; Kjellander,
1990). Their importance in the interactions of colloidal, amphiphilic and biological
surfaces have yet to be fully established.

Similar ion-correlation interactions can arise between the surface co-ions of two
opposing surfaces if these are mobile, as occurs at surfactant and lipid bilayer and
biological membrane surfaces. Indeed, it has been suggested that when both the
counterions and coions are mobile, the final adhesion of the two surfaces can cause
them to order into a thin crystalline lattice (Rouzina and Bloomfield, 1996). Such
effects are usually specific and can be understood only by considering the surface
charges as discrete and of a certain size rather than as smeared out over the surfaces
(cf. Chapter 21).

Both ion-correlation and ion-condensation forces enhance adhesion; they are related
(Rouzina, 1996; Shklovskii, 1999) but are difficult to separate, quantify or simulate and, so
far, do not appear to be describable by a single simple force-law or potential function
although some have been proposed (Lau et al., 2000). Experimental examples of both of
these interactions are given in Part III.

Another effect that derives from the discreteness of surface charges is the “image
force” produced by a surface coion and its image on the opposite surface. As shown in
Figure 13.2, this produces a repulsive force when the two surfaces are in a medium (e.g.,
water) with a dielectric constant that is higher than those of the surfaces. However,
Ohshima (1995) has argued that for certain charge-regulating mechanisms the image
force can reduce the double-layer repulsion.
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14.20 More Complex Systems: Finite Reservoir Systems
and Finite lon-Size Effects

We have seen how different are the interactions between charged surfaces in the
absence and presence of a bulk “infinite” reservoir of electrolyte ions at some given
concentration. In many cases the situation is not so simple. For example, the case of
“counterions only,” discussed in Sections 14.2-14.9 changes when some electrolyte is
present, and when the number of counterions coming off from the surfaces are
comparable to the number of background electrolyte ions already present in the system,
the equations for the ionic distributions and interaction forces become more compli-
cated and can only be solved numerically (Dubois et al., 1992). Such systems arise when
concentrated dispersions of clay sheets, micelles, bilayers or polyelectrolytes interact in
pure water or dilute salt solutions (Dubois et al., 1992; Diederichs et al., 1985; Delville
et al., 1993).

In some cases, simplifying assumptions can be made. Thus, it has been found that the
Debye length of a micellar or polyelectrolyte solution is given by Eq. (14.36) but where
only the background electrolyte ions and micellar or polyelectrolyte counterions
contribute to the ionic concentrations in that equation but not the micelles or poly-
electrolyte molecules themselves. For example, for a micellar system above the critical
micelle concentration (cmc) consisting of completely dissociated surfactant monomers at
a concentration X coexisting with micelles of concentration Xy and aggregation
number N of which a fraction fare ionized (typically f = 0.25), the Debye length is given
by (Pashley and Ninham, 1987)

2
e
k2 = ——[2Xeme + (NXmic — Xeme)f]- (14.66)

eoekT
Tadmor and colleagues (2002) derived a similar equation for polyelectrolyte solutions.

Finite ion size effects can play an important role in modifying the double-layer
interactions between surfaces at small separations. First, as discussed in Section 14.6, the
existence of a Stern Layer due to finite coion and/or counterion sizes does not necessarily
affect the functional form of the ionic distribution away from a surface; but it does shift
the plane of origin of the distribution (the Outer Helmholtz Plane or OHP) which effec-
tively changes the way D = 0 is defined in equations for the forces. As will be discussed
further below, this can have important consequences in the presence of another force,
such as the van der Waals force, which may have a different plane of origin. Similar finite
size effects arise in the case of van der Waals forces, but now with respect to the solvent
molecules, as described in Chapter 15.

The previous sections have revealed the great complexity of double-layer forces,
almost to the point where it may appear than any interaction is possible. However, as
we shall see, there are many situations where the measured forces appear to be well
described by the simplest continuum equations, such as those in Figure 14.10, right
down to molecular contact.
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14.21 Van der Waals and Double-Layer Forces
Acting Together: the DLVO Theory

The total interaction between any two surfaces must also include the van der Waals
attraction. Now, unlike the double-layer interaction, the van der Waals interaction
potential is largely insensitive to variations in electrolyte concentration and pH, and so
may be considered as fixed in a first approximation. Further, the van der Waals attraction
must always exceed the double-layer repulsion at small enough distances since it is
a power law interaction (i.e., W « —1/D"), whereas the double-layer interaction energy
remains finite or rises much more slowly as D — 0. Figure 14.13 shows schematically the
various types of interaction potentials that can occur between two similarly charged
surfaces or colloidal particles in a 1:1 electrolyte solution under the combined action of
these two forces. Depending on the electrolyte concentration and surface charge density
or potential one of the following may occur:

¢ For highly charged surfaces in dilute electrolyte (i.e., long Debye length), there is
a strong long-range repulsion that peaks at some distance, usually between 1 and
5 nm, at the force or energy barrier, which is often high (many k7).

¢ In more concentrated electrolyte solutions there is a significant secondary minimum,
usually beyond 3 nm, before the energy barrier closer in. The potential energy
minimum at contact is known as the primary minimum. For a colloidal system, even
though the thermodynamically equilibrium state may be with the particles in contact
in the deep primary minimum, the energy barrier may be too high for the particles to
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FIGURE 14.13 Schematic energy versus distance profiles of the DLVO interaction. The actual magnitude of the energy
W is proportional to the particle size (radius) or interaction area (between two planar surfaces).
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overcome during any reasonable time period. When this is the case, the particles
will either sit in the weaker secondary minimum or remain totally dispersed in the
solution. In the latter case the colloid is referred to as being kinetically stable (as
opposed to thermodynamically stable).

* For surfaces of low charge density or potential, the energy barrier will be lower. This
leads to slow aggregation, known as coagulation or flocculation. Below a certain
charge or potential, or above some concentration of electrolyte, known as the critical
coagulation concentration, the energy barrier falls below the W = 0 axis (middle
curve in Figure 14.13) and the particles then coagulate rapidly. The colloid is now
referred to as being unstable.

* As the surface charge or potential approaches zero the interaction curve approaches
the pure van der Waals curve (lower dashed curve in Figure 14.13), and two surfaces
now attract each other strongly at all separations.

The sequence of phenomena described above can be described quantitatively (see
Worked Examples 14.5 and 14.6), and it forms the basis of the celebrated DLVO theory of
colloidal stability, after Derjaguin and Landau (1941), and Verwey and Overbeek (1948).
See also Hiemenz (1997), Hunter (2001), and Evans and Wennerstrom (1999).

The main factor inducing two (negatively charged) surfaces to come into adhesive
contact in a primary minimum is the lowering of their surface charge or potential, brought
about by decreasing the pH, increased cation binding, or increasing the screening of the
double-layer repulsion by increasing the salt concentration. If the double-layer repulsion
remains high on raising the salt concentration, two surfaces can still “adhere” to each other,
but in the secondary minimum, where the adhesion is much weaker and easily reversible.
On the other hand, as discussed below, in Section 14.16 and in Chapter 15, there are situ-
ations where particles first aggregate then redisperse as the salt concentration or pH is
increased.

It is clear that one must have a fairly good idea of the charging process occurring at
a surface before attempting to understand its double-layer interactions and the stability
of colloidal dispersions, as Worked Examples 14.5 and 14.6 show.

Worked Example 14.5

Question: For a biocolloidal dispersion of 0.1 pm radius vesicles in a 100 mM NaCl solution at
37°C it has been established that the surface potential ¥ changes linearly with increasing pH
from Yy = +50 mV at pH 5 to ¥ = —50 mV at pH 7. Assuming that the vesicle dispersion
remains effectively stable for energy barriers greater than about 25 k7, calculate the range of
pH over which the system is unstable—that is, the vesicles aggregate. Assume a Hamaker
constant for the vesicles in the solution of A = 1072°J.

Answer: The vesicle-vesicle interaction energy at 37°C is

W(D) = JRZe™P — AR/12D = (0.5 x 10" ") x (9.38 x 10~ '") tanh®(¥(/107)e " — (10 % x
1077)/12D = (4.69 x 10~ '®) tanh?(y/107) e P™/095 _ (833 x 1072°)/12D(nm). Figure 14.14
shows the DLVO plots at Yy = £24.5 mV (the “critical coagulation potential” where the energy
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FIGURE 14.14 Computed DLVO energy profiles between amphoteric vesicles of radii 1,000 A (0.1 pm) in 100 mM
NaCl solution at 37°C. Note that at the “critical coagulation potential” (middle curve) the energy maximum at
W = 0 occurs at the Debye length (D = k' = 0.95 nm in 100 mM NacCl).

is everywhere negative resulting in rapid coagulation) as well as at £14.5 and +34.5 mV—that
is, 10 mV on either side of the critical potential. The energy barrier exceeds 25 kT=1.1 x 10~ ']
for potentials higher than about 35 mV (positive or negative), which correspond to pH values
of 35/50 = 0.7 above or below pH 6.0 (the “isoelectric point” or pI where Y = 0). Thus, the
vesicles will aggregate at pH values between 5.3 and 6.7, although rapid coagulation will occur
at pH values between 5.5 and 6.5. Strictly, the answer also depends on the vesicle concentration
and on the depth of the primary minimum. The secondary minimum at ~4.5 nm is of depth
1.5 x 107%°J or 3.5 kT, which is not deep enough to cause aggregation except for larger vesicles
at higher vesicle concentrations.

Worked Example 14.6

Question: For a number of colloidal systems it is found that the “critical coagulation
concentration” (ccc) of the electrolyte varies with the inverse sixth power of the counterion
valency z—that is, p (ccc) o« 1/25. s this empirical observation, known as the Schultze-Hardy
rule, (Schultze, 1882, 1883; Hardy, 1900), consistent with the DLVO theory?

Answer: The total DLVO interaction potential between two spherical particles interacting at
constant potential is

W(D) = (647kTRpv?/x*)e™ P — AR/12D (14.67)
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By definition (see Figures 14.13 and 14.14), the critical coagulation concentration or condition
occurs when both W = 0, and dW/dD = 0. The first condition leads to

k?/p. = 768wkTDy*e P /A,

while the second condition leads to kD = 1, which shows that the potential maximum occurs at
D = k! (the Debye length) as illustrated in Figure 14.14. Inserting this into the above equation
leads to
K3 /pe = 7687kTy?e /A,
that is,
<8 % (T2 [ A)E.

Now, since k* « po, z°/¢T, the above equation implies that

2Bpo STy /A2, (14.68)
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FIGURE 14.15 DLVO forces measured between two negatively charged mica surfaces in monovalent (10> to
1 M Nacl, KCl, KNOs) and divalent (10~* M CaCl,) solutions. The shaded band in the right inset is the
theoretical DLVO force in 107% M 1:1 electrolyte using a Hamaker constant of A = 2.2 x 107%° J showing the
constant charge ¢ and constant potential ¥ limits. Theoretically, within the Poisson-Boltzmann formalism, we
expect the interaction to fall between these two limits. At low ionic strengths, the forces are in good
agreement with the DLVO theory right down to adhesive molecular contact in the primary minimum at D = 0.
The left inset is the measured force in concentrated 0.1-1.0 M KNO3 showing the emergence of a secondary
minimum, and at even smaller separations there is an additional repulsive short-range steric-hydration force
believed to be due to the finite hydrated size of the adsorbed monovalent cations (see Figure 14.7).

Figure 14.18 shows a similar effect. [Data from SFA experiments with surfaces in the crossed-cylinder geometry,
equivalent to a sphere of radius R near a flat surface or two spheres of radius 2R, from Israelachvili and Adams,
1978; Pashley, 1981a; and Israelachvili, 1982.]
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which is a constant if v is constant, a condition that holds at high surface potentials (¥, > 100
mV) where v = tanh(zey,/4kT) = 1. In this limit, therefore, the critical coagulation concen-
trations do indeed scale as p. « 1/z° For example, if coagulation occurs at 1 M with a 1:1
electrolyte, it will occur at éM with a 2:2 electrolyte (or divalent counterions), and at %M with
a 3:3 electrolyte (or trivalent counterions). Thus, the Schultze-Hardy rule is consistent with the
DLVO theory.

But wait. Is it not unreasonable to assume high surface potentials in divalent and trivalent
electrolyte solutions? Let us investigate the case of low potentials. Here we have v « zyy/T, so
that Eq. (14.68) now becomes

22 po, = Ty /A%, (14.69)

which is constant if ¥, remains constant. Thus for low but constant potentials we obtain
a modified form of the Schultze-Hardy rule: po, o 1/2z%

In real systems the surface potential is neither high nor constant, but usually falls to quite
low values as the valency of the electrolyte counterions increases. For example, if Yy « 1/z,
then for low potentials we now obtain: p. o« y4/z> « 1/z° which brings us back to the
Schultze-Hardy rule. Clearly, the DLVO theory can be applied in more ways than one to explain
the Schultze-Hardy rule.

Probably the most important practical issue in any quantitative interpretation of
experimental results in terms of the DLVO theory is the question of the locations of the
“planes of origin” of the double-layer and van der Waals forces. For the double-layer
interaction D = 0 is defined at the plane where the PB equation commences to be valid—
that is, at the OHP, which is generally at or a few angstroms farther out from the physical
substrate-liquid interface due to the finite size of the surface coions or adsorbed coun-
terions (14.4, 14.7 and 14.18) or the protruding or mobile surface-attached co-ions
(Figures 15.14, 16.14, and Chapter 21). On the other hand, for the van der Waals force D =
0 is defined as the distance between the atomic or ionic centers, which is ~2A farther in
from the physical solid-liquid interface (cf. Section 13.13). A difference of ¢ in the loca-
tions of D = 0 per surface (20 for both surfaces) pushes the plane of origin of the double-
layer interaction (the OHP) out to D = 20 relative to the van der Waals interaction, which
can totally change the DLVO interaction potential. It is remarkable that for values of ¢ as
small as 0.2-0.3 nm the energy barrier and deep primary minimum can be totally elim-
inated, the force-law becomes repulsive at all separations down to “steric contact” at D =
20, and its profile can be significantly modified out to distances as far as 5 nm (see Figs
15.14 and 15.15). This model was first proposed by Frens and Overbeek (1972) to explain
the common phenomenon of colloidal stability in high salt, the spontaneous swelling of
certain colloids in water, and repeptization—the reversible coagulation of colloidal
particles (according to the DLVO theory coagulation in a primary minimum should never
be reversible). This effect was later demonstrated experimentally by Marra and Israel-
achvili (1985) for charged lipid bilayers, by Vigil et al., (1994) for silica surfaces, and by
Claesson et al., (1984) for adsorbing counterions (see Figure 14.18).
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Worked Example 14.7

Question: The osmotic limit of Eq. (14.59) assumes that the trapped counterions have zero
size. Applying the same finite-size correction as in the van der Waals equation of state, show
that this introduces an effective Stern Layer of thickness 6 = 16wa®s/3e per surface, where a is
the ionic radius and ¢ the surface charge density. What is ¢ for (i) unhydrated and (ii) hydrated
sodium counterions when each surface charge occupies an area of 1 nm??

Answer: The van der Waals excluded volume correction to the pressure is P = kT/(V — b),
where we may write V = AD for surfaces of area A interacting across a gap width D. Thus,
P=kT/(AD — b) = kT/A(D — b/A), which effectively shifts the force curve for point counterions
F = PA = kT/D outwards by D = b/A. Since b = 4 x total ionic volume in the gap =
4(20A/e)3wa’, the magnitude of this shift is

6 = b/2A = 16wa’c/3e per surface,

where g/e is the number of charged sites per unit area. Thus, the free counterions in the diffuse
double-layer increase the range of the short-range double-layer repulsion in the same way as
does a finite Outer Helmholtz Plane or Stern Layer of thickness 6, which are normally
associated with the surface co-ions or surface-bound counterions. Further aspects of this
effect are discussed by Marcelja (1997, 2000). For a charge density of 1 nm? per unit charge
(0/e = 10'® m™?), inserting a = 0.095 nm for the radius of unhydrated sodium ions (Table 4.2)
gives 6 = 0.014 nm. In contrast, for hydrated ions, where a = 0.36 nm, we obtain ¢ = 0.8 nm,
which is a 50-fold increase that can have a very dramatic effect on the net DLVO interaction
(see Worked Example 15.3).

14.22 Experimental Measurements of Double-Layer
and DLVO Forces

Figure 14.15 shows the experimental results of direct force measurements between two
mica surfaces in dilute 1:1 and 2:1 electrolyte solutions where the Debye length is large,
thereby allowing accurate comparison with theory to be made at distances much smaller
than the Debye length. The theoretical DLVO force laws (using exact solutions to the non-
linear PB equation, which differ from the approximate equations of Section 14.16 only
below k') are shown by the continuous curves. The agreement is remarkably good at all
separations, even down to 2% of k!, and indicates that the DLVO theory is basically
sound. One may also conclude that the dielectric constant of water must be the same as
the bulk value even at surface separations as small as 2 nm, since otherwise significant
deviations from theory would have occurred (Hamnerius et al., 1978, showed that the
dielectric constant of water remains unchanged even in 1 nm films). The surface
potentials ¥, inferred from the magnitude of the double-layer forces agree within 10 mV
with those measured independently on isolated mica surfaces by the method of elec-
trophoresis (Lyons et al., 1981). Further, the surface charge density corresponding to
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FIGURE 14.16 The first accurate measurement of double-layer forces using AFM, between a silica bead of radius

R ~ 1.5 um and a flat silica surface in agueous NaCl solutions. Note how the repulsive short-range double-layer and
“hydration” forces increase with increasing ionic strength even though the range of the long-range double-layer
repulsion decreases —an effect also seen in the forces between other surfaces such as mica (Figure 14.15). [Repro-
duced from Ducker and Senden, 1992, with permission.]

these potentials is typically le per 60 nm? Thus, at separations below about 8 nm the
surfaces are actually closer to each other than the mean distance between the surface
charges, and yet the double-layer forces still behave as if the surface charges are smeared
out. The reason for this will become clear in section 14.24.

Figure 14.16 shows the first AFM measurement of double-layer forces between two
silica surfaces, by Ducker et al., (1991). Again the results are in good agreement with
theory except at small separations where no adhesion was measured. As mentioned in the
previous section, in the case of silica the lack of adhesion in aqueous electrolyte solutions
is believed to be due to the protruding silicic acid groups on the silica surface, which carry
the negative charges and define the OHP (see also Section 15.8 and Vigil et al., 1994).

Other SFA, AFM and Osmotic Pressure measurements of double-layer or DLVO forces
have been carried out in various monovalent, divalent and multivalent electrolyte solu-
tions (Pashley, 1981a,b, 1984; Pashley and Israelachvili, 1984; Horn et al., 1988a), between
surfactant and lipid bilayers (Pashley and Israelachvili, 1981; Marra, 1986b,c; Marra and
Israelachvili, 1985; Claesson and Kurihara, 1989; Pashley et al., 1986; Diederichs et al.,
1985; Dubois et al., 1992; Delville et al., 1992, 1993; Anderson et al., 2010), across soap
films (Derjaguin and Titijevskaia, 1954; Lyklema and Mysels, 1965; Donners et al., 1977),
between silica, sapphire, and metal or metal oxide surfaces (Horn et al., 1988a, 1989;
Smith et al., 1988; Meagher, 1992; Vigil et al., 1994; Larson et al., 1993), as well as in
nonaqueous polar liquids (Christenson and Horn, 1983, 1985). The results on surfactant
and lipid bilayers, and on biological molecules and surfaces, are discussed in more detail
in later sections devoted to amphiphilic and biological systems. Here we shall concen-
trate more on solid, inorganic surfaces.
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FIGURE 14.17 Classic DLVO forces measured between two sapphire surfaces in 107> M NaCl solutions at different
pH. The continuous lines are the theoretical DLVO forces for the potentials shown and a Hamaker constant of

A =6.7 x 1072°). [Data from SFA experiments with surfaces in the crossed-cylinder geometry, equivalent to a sphere
of radius R near a flat surface or two spheres of radius 2R, adapted from Horn et al., 1988a.]

In general, the results have been in good agreement with the DLVO theory
(Figure 14.17), often down to separations well below the Debye length (see Figure 14.15).
When deviations do occur these can usually be attributed to the presence of other,
non-DLVO, forces or to the existence of a Stern-layer or protruding coions. A direct
experimental measurement of Stern-layer stabilization is shown in Figure 14.18 where the
counterions used in that study where unusually large. This shows that a short-range
stabilizing repulsion, even in high salt, does not necessarily imply the existence of an
additional non-DLVO force (such as a solvation or hydration force, discussed in
Chapter 15). But it does require an explanation for what determines the finite value for 6.

As already noted, for certain geometries the double-layer repulsion at constant
potential decreases at long-range but increases at short range with increasing ionic
strength. This effect may explain the coagulation of colloidal particles and the collapse
of certain charged polymers with increasing salt, followed by their redispersal and
reexpansion on further increasing the concentration (Kallay et al., 1986; Drifford et al.,
1996).

It is perhaps surprising that measured double-layer forces are so well described by
a theory that, unlike van der Waals force theory, contains a number of fairly drastic
assumptions, viz. the assumed smearing out of discrete surface charges, that ions can be
considered as point charges, the ignoring of image forces, and that the PB equation
remains valid even at small distances and high concentrations. One reason for this is that
many of these effects act in opposite directions and tend to cancel each other out. As
mentioned above, most experimental deviations in the forces from those expected from
the DLVO theory are not due to any breakdown in the DLVO theory, but rather to the
existence of a Stern-layer or to the presence of other forces such a ion-correlation,
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FIGURE 14.18 Example of Stern-layer effects due to the finite size of the counterions. Measured forces between
two mica surfaces in various tetra-alkyl ammonium bromide solutions (Claesson et al., 1984). The continuous curves
are the expected DLVO interactions assuming potentials as shown and Stern-layer thicknesses of ¢ per surface
equal to the diameters (Born repulsion) of the adsorbed cations: § = 0.6 nm for methyl ammonium (MesN™), 6 = 0.9 nm
for propyl ammonium (PrsN*), and 6 = 1.2 nm for pentyl ammonium (Pe;N*). Note how the outward shift in the OHP
has eliminated the force maximum and primary minimum. [Data from SFA experiments with surfaces in the
crossed-cylinder geometry, equivalent to a sphere of radius R near a flat surface or two spheres of radius 2R.]

solvation, hydrophobic, or steric forces. These additional forces, are, of course, very
important, especially in more complex colloidal and biological systems where they often
dominate the interactions at short-range where most of the interesting things happen.
Their consideration forms a large part of the rest of this book.

14.23 Electrokinetic Forces

When an electric field is applied across an electrolyte solution, any charged particles
suspended in the solution will move toward the oppositely charged electrode—for
example, a negatively charged colloidal particle will move toward the anode. This is
known as electrophoretic flow and the force acting on the particle is known as the
electrophoretic force. With regard to the electrolyte ions themselves, these will also move,
the anions toward the anode and the cations toward the cathode. If the surfaces of the
flow chamber are charged—for example, if the field is applied along a silica capillary tube
whose surface is negatively charged—then the excess positively charged counterions in
the solution will move toward the cathode. Since these counterions will be located within
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the double-layer very close to the surface, the whole liquid column enveloped by these
ions (including any particles within the column) will be dragged along with them. This is
known as electro-osmotic flow.

The forces, flows and flow patterns generated by electrophoretic and electro-osmotic
forces can be extremely complex, and depend on the geometry and size of the flow
chamber and the suspended particles. For example, the negatively charged particle
moving toward the anode by electrophoresis will also experience an opposing electro-
osmotic force arising from the viscous drag of the suspending liquid moving in the
opposite direction. If the diameter of the capillary tube is large compared to the diameter
of the particle, the electrophoretic force wins out, but if it is small, the electro-osmotic
force wins out and the particle will move with the liquid (Sen Gupta and Papadopoulos,
1997; Papadopoulos, 1999).

14.24 Discrete Surface Charges and Dipoles

The charge on a solid surface is obviously not uniformly spread out over the surface, as
has been implicit in all the equations derived so far. For a surface with a typical potential
of 75 mV in a 1 mM NaCl solution, the surface charge density as given by the Grahame
equation is ¢ = 0.0075 C m 2, which corresponds to only one charge per 21 nm? or
2100 A2. In 0.1 M NaCl the same potential implies 1e per 2 nm?. Thus, the charges on real
surfaces are typically 1-5 nm apart from each other on average. What effect does this have
on the electrostatic interaction between two surfaces, especially at surface separations
closer than the separation between the charges?

Let us consider a planar square lattice of like charges g as shown in Figure 14.19a. If d is
the distance between any two neighboring charges, then the mean surface charge density
iso = q/dz, and if this charge were smeared out, the electric field emanating from the
surface would be uniform and given by E, = 0/2¢¢y. What, then, is the field of a surface
lattice of discrete charges having the same mean charge density? To compute this field
one must sum the contributions from all the charges. The resulting slowly converging
series can be turned into a rapidly converging series by using a mathematical technique
known as the Poisson summation formula (Lighthill, 1970). If x and y are the coordinates
in the plane relative to any charge as the origin (Figure 14.19a), the field E, along the z
direction is given by the series (Lennard-Jones and Dent, 1928)

E, = L[l +2 (coszlx + coszly) g2mz/d | } (14.70)

2e0€ d d ’

where the higher-order terms decay much more rapidly with distance z. The first term
is the same as that of a smeared-out surface charge. The second term is interesting,
for it shows that the excess field decays away extremely rapidly, with a decay length of
d/2m, for example, about 0.3 nm for charges 2 nm apart. Thus, at z = d the electric
field is at most 17% different from that of the smeared-out field, while at z = d it has
reached 99.3% of the smeared-out value! A similar conclusion is reached for other types
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FIGURE 14.19 (a)-(c): Sections of infinite lattices of charges and dipoles. (d) and (e): Electric field lines and directions
above electro-neutral surfaces consisting of discrete charges (d) and aligned dipoles (e). Equations (14.71) and
(14.72) show that within a very short distance away from each surface (z > d) the average or mean field of

a dipolar lattice is already effectively zero.

of lattices; for example, for a hexagonal lattice where neighboring ions are separated by
a distance d, the mean surface charge density is ¢ = 2qA/3d* and the exponential decay
length of the field is v/3d/4m, which is even smaller than for a square lattice—that is,
the field decays even faster. It is for these reasons that the smeared-out approximation
works so well in considering the electrostatic interactions at and between charged
surfaces (McLaughlin, 1989).

The above analysis can be readily extended to surfaces that have no net charge but that
carry discrete surface dipoles. A common example of this is the dipolar or zwitterionic
headgroups of lipid molecules that reside at the lipid-water interfaces of micelles, surface
monolayers, and bilayers. The dipoles may align normally or parallel to the surfaces, and
they can be either immobilized in a 2-D lattice or have (usually restricted) lateral and/or
rotational mobility. The charged lattice of Figure 14.19a can be transformed into a lattice
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of in-plane dipoles by adding charges of opposite sign at the center of each square
(Figure 14.19b). By superimposing the fields of the positive and negative lattices using
Eq. (14.70) it is easy to show that the electric field opposite a positive charge (at x = 0,
y=0)is

E, = +(4q/eoed?)e ™/ .. (14.71)
while opposite a negative charge (at x = id, y = 3d), it is
E, = —(4q/eqed?)e 2™/ 1 ... (14.72)

This geometry is equivalent to a dipolar or zwitterionic lattice whose dipoles, of length
d/\/2 and surface density 1/d?, are lying parallel to the surface.

For dipoles of length I comparable to d arrayed perpendicular to the surface, as in
Figure 14.19c, the above two equations become replaced by E, = +(2g/¢ped®)e >™' 4 ...
This procedure can be readily extended to other lattices including three-dimensional
ionic crystals. The end result is always that the field is positive or negative depending on
the x, y coordinates and that it decays very rapidly to zero with increasing z.

If a second lattice of vertical dipoles is brought up to the first, the Coulombic inter-
action pressure between the two dipolar surfaces at a separation D will be given by

P(D) = £(2¢*/eoed*)e 2P/d (14.73)

depending on whether the approaching dipoles are exactly opposite each other or in
register (+ sign, repulsion) or out of register (— sign, attraction). The pressure is anyway
very small and in reality, since surface dipoles will not be on a perfect lattice but distributed
randomly or moving about (e.g., zwitterionic head-groups on a lipid bilayer surface),
the net pressure will average to zero in a first approximation, though a Boltzmann-
averaged interaction will yield a weak but overall exponentially attractive force. A
similar result is obtained if the dipoles are lying in the plane of the surfaces, as in
Figure 14.19b.

The above results furnish yet another example of where the purely electrostatic
interaction between a system of charges or dipoles that are overall electrically neutral
produces an attractive force even though intuitively one might have expected two
surfaces with vertical dipoles pointing towards each other to always repel each other. In
the limit where the surface-bound dipoles are free to rotate in all directions the resulting
interaction energy must be the same as the attractive van der Waals-Keesom interaction,
which decays as —-1/D* [Eq. (13.49)] but is screened if the interaction occurs across
electrolyte solution (Section 13.11). Jénsson and Wennerstrom (1983) also considered the
image force between individual dipoles and their image reflected by the other surface,
and found that for surfaces of low dielectric constant interacting across water this
contribution can be large and repulsive.

The interactions of finite-sized dipolar domains on surfaces, as occur in monolayers,
lipid bilayers and biological membranes, are discussed in Chapters 20 and 21 (see also
Problem 14.1).
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PROBLEMS AND DISCUSSION TOPICS

14.1

14.2

14.3

144

14.5

14.6

Sketch the electric field lines of (i) a single dipole, (ii) an infinite lattice of vertical
dipoles, and (iii) an infinite lattice of in-plane dipoles. Indicate the directions of the
dipoles and fields with arrows. (iv) Without resorting to complex mathematical
calculations show whether the normal Coulomb (dipole-dipole) force F(z) between
two similar parallel surfaces of type (ii) and (iii) is attractive or repulsive. Assume that
the surfaces (not the fixed dipoles on each surface) can move freely in the x-y plane.
(v) Sketch the electric field lines of a finite lattice of dipoles of type (ii) and (iii).
A glass surface is exposed to water vapor at 96% relative humidity (i.e., p/psat =
0.96). Estimate the equilibrium thickness D of the thin film of water adsorbed on
the surface assuming (i) that only electrostatic double-layer forces are operating
and that the surface is fully dissociated with a surface charge density of ¢ =
—0.1 C/m?, (ii) that the monovalent counterions (z = 1) are uniformly distributed
throughout the thin water film. [Answer: 0.46 nm.] With these same assumptions
also estimate the repulsive electrostatic pressure between two such planar
surfaces immersed in water at a distance 2D apart. [Answer: 5.6 x 10% Pa or 55 atm.]
Is your estimate likely to be too high or too low, and how does it compare with
the attractive van der Waals pressure between the surfaces at this separation? Will
the van der Waals attraction eventually win out at some smaller, but physically
realistic, plate separation? [Answer: ~0.4 nm.]
Calculate the repulsive pressure between two charged surfaces in pure water where
the only ions in the gap are the counterions that have come off from the dissociating
surface groups (i.e., no electrolyte present, no bulk reservoir). Assume a surface
charge density of one electronic charge per 0.70 nm?® and T = 22°C. Plot your results
as pressure against surface separation in the range 0.5-18 nm and compare these
with the experimental results of Cowley et al., [Biochemistry, Vol. 17, 3163 (1978)]
where in Figure 4b on page 3166 the authors plot their measured values for such
a system (A points). What conclusions do you arrive at concerning the “hydration”
forces between two pure phosphatidyl-glycerol (PG) bilayers at small separations?
Explain, in qualitative terms, why the double-layer interaction between two
surfaces having unequal but constant charge densities is always repulsive at
small separations, irrespective of the signs of ¢; and g», and without resorting
to complicated equations or mathematics show that it is given by
P(D—0) = +|(01 + 02) kT /zeD)|, as given by Eq. (14.63) in this limit.
Split the double-layer interaction free energy into its enthalpic and entropic
components and discuss the implications of your result.
The reason(s) why positively charged divalent counterions such as Ca®" are better
coagulants or flocculants of negatively charged surfaces or particles than mono-
valent ions such as Na™ is because of one or more of the following:

(i) They screen the electrostatic repulsion better.

(ii) They are more hydrated.



